$k$-Type Bi-Null Cartan Slant Helices in $\mathbb{R}^6_2$
Download PDF
Authors: A. UçUM AND K. ILARSLAN
DOI: 10.46793/KgJMat2206.919U
Abstract:
In the present paper, we give the notion of k-type bi-null Cartan slant helices in ℝ26, where k ∈. We give the necessary and sufficient conditions for bi-null Cartan curves to be k-type slant helices in terms of their curvature functions.
Keywords:
k-Slant helix, bi-null Cartan curves, semi-Euclidean space, Cartan curvatures, Frenet equations.
References:
[1] A. Ali, Position vectors of slant helices in Euclidean 3-space, J. Egyptian Math. Soc. 20 (2012), 1–6.
[2] A. T. Ali, R. Lopez and M. Turgut, k-Type partially null and pseudo null slant helices in Minkowski 4-space, Math. Commun. 17 (2012), 93–103.
[3] M. Ergüt, H. B. Öztekin and S. Aykurt, Non-null k-slant helices and their spherical indicatrices in Minkowski 3-space, Journal of Advanced Research in Dynamical and Control Systems 2 (2010), 1–12.
[4] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turkish J. Math. 28 (2004), 531–537.
[5] L. Kula, N. Ekmekçi, Y. Yaylı and K. İlarslan, Characterizations of slant helices in Euclidean 3-space, Turkish J. Math. 34 (2010), 261–273.
[6] L. Kula and Y. Yaylı, On slant helix and its spherical indicatrix, Appl. Math. Comput. 169 (2005), 600–607.
[7] E. Nešović, E. B. Koç Öztürk and U. Öztürk, k-Type null slant helices in Minkowski space-time, Math. Commun. 20 (2015), 83–95.
[8] M. Sakaki, Bi-null Cartan curves in semi-Euclidean spaces of index 2, Beitr. Algebra Geom. 53(2) (2012), 421–436.
[9] M. Turgut and S. Yılmaz, Characterizations of some special helices in ????4, Scientia Magna 4 (2008), 51–55.
[10] A. Uçum, K. İlarslan and M. Sakaki, k-Type bi-null slant helices in ℝ25, J. Geom. 108 (2017), 913–924.
[11] A. Uçum, K. İlarslan and M. Sakaki, k-Type bi-null Cartan slant helices in ℝ36, Southeast Asian Bull. Math. 42 (2018), 937–946.