$k$-Type Bi-Null Cartan Slant Helices in $\mathbb{R}^6_2$


Download PDF

Authors: A. UçUM AND K. ILARSLAN

DOI: 10.46793/KgJMat2206.919U

Abstract:

In the present paper, we give the notion of k-type bi-null Cartan slant helices in 26, where k {1, 2,3, 4,5, 6}. We give the necessary and sufficient conditions for bi-null Cartan curves to be k-type slant helices in terms of their curvature functions.



Keywords:

k-Slant helix, bi-null Cartan curves, semi-Euclidean space, Cartan curvatures, Frenet equations.



References:

[1]   A. Ali, Position vectors of slant helices in Euclidean 3-space, J. Egyptian Math. Soc. 20 (2012), 1–6.

[2]   A. T. Ali, R. Lopez and M. Turgut, k-Type partially null and pseudo null slant helices in Minkowski 4-space, Math. Commun. 17 (2012), 93–103.

[3]   M. Ergüt, H. B. Öztekin and S. Aykurt, Non-null k-slant helices and their spherical indicatrices in Minkowski 3-space, Journal of Advanced Research in Dynamical and Control Systems 2 (2010), 1–12.

[4]   S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turkish J. Math. 28 (2004), 531–537.

[5]   L. Kula, N. Ekmekçi, Y. Yaylı and K. İlarslan, Characterizations of slant helices in Euclidean 3-space, Turkish J. Math. 34 (2010), 261–273.

[6]   L. Kula and Y. Yaylı, On slant helix and its spherical indicatrix, Appl. Math. Comput. 169 (2005), 600–607.

[7]   E. Nešović, E. B. Koç Öztürk and U. Öztürk, k-Type null slant helices in Minkowski space-time, Math. Commun. 20 (2015), 83–95.

[8]   M. Sakaki, Bi-null Cartan curves in semi-Euclidean spaces of index 2, Beitr. Algebra Geom. 53(2) (2012), 421–436.

[9]   M. Turgut and S. Yılmaz, Characterizations of some special helices in ????4, Scientia Magna 4 (2008), 51–55.

[10]   A. Uçum, K. İlarslan and M. Sakaki, k-Type bi-null slant helices in 25, J. Geom. 108 (2017), 913–924.

[11]   A. Uçum, K. İlarslan and M. Sakaki, k-Type bi-null Cartan slant helices in 36, Southeast Asian Bull. Math. 42 (2018), 937–946.