$(\omega ,c)$-Almost Periodic Distributions


Download PDF

Authors: M. T. KHALLADI, M. KOSTIC, A. RAHMANI AND D. VELINOV

DOI: 10.46793/KgJMat2301.007K

Abstract:

The aim of this work is the introduction of (w, c )-almost periodicity (resp. asymptotic (w,  c)-almost periodicity) in distributions spaces. The characterizations and main properties of these distributions are given. We also study the existence of distributional (w, c)-almost periodic solutions of linear differential systems.



Keywords:

(w, c)-Almost periodic functions, almost periodic Schwartz distributions, (w, c)-almost periodic distributions, asymptotically (w, c)-almost periodic distributions, linear differential systems.



References:

[1]   J. Barros-Neto, An Introduction to the Theory of Distributions, Marcel Dekker, New York, 1973.

[2]   B. Basit and H. Güenzler, Generalized vector valued almost periodic and ergodic distributions, J. Math. Anal. Appl. 314(1) (2006), 363–381.

[3]   H. Bohr, Almost Periodic Functions, Chelsea Publishing Company, London, 1947.

[4]   I. Cioranescu, Asymptotically almost periodic distributions, Appl. Anal. 34(3-4) (1990), 251–259.

[5]   A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math. 377, Springer, New York, 1974.

[6]   M. Fréchet, Les fonctions asymptotiquement presque périodiques, Revue Sci. 79(213) (1941), 341–354.

[7]   M. Kostić, Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations, W. de Gruyter, Berlin, 2019.

[8]   M. Kostić and D. Velinov, Vector-valued almost automorphic distributions and vector-valued almost ultradistributions, Novi Sad J. Math. 48(2) (2018), 111–121.

[9]   L. Schwartz, Théorie des Distributions, 2ième Edition, Hermann, 1966.