(Fuzzy) Filters of Sheffer Stroke BL-Algebras
Download PDF
Authors: T. ONER, T. KATICAN AND A. BORUMAND SAEID
DOI: 10.46793/KgJMat2301.039O
Abstract:
In this study, some (fuzzy) filters of a Sheffer stroke BL-algebra and its properties are presented. To show a relationship between a filter and a fuzzy filter of Sheffer stroke BL-algebra, we prove that f is a fuzzy (ultra) filter of C if and only if fp is either empty or a (ultra) filter of C for each p ∈ [0, 1], and it is satisfied for p = f(1) and for the characteristic function of a nonempty subset of a Sheffer stroke BL-algebra.
Keywords:
(Sheffer stroke) BL-algebra, Sheffer stroke, filter.
References:
[1] A. Borumand Saeid and S. Motamed, Normal filters in BL-algebras, World Applied Sciences Journal 6 (2009), 70–76.
[2] A. Borumand Saeid and S. Motamed, Some results in BL-algebras, MLQ Math. Log. Q. 55(6) (2009), 649–658.
[3] A. Borumand Saeid and W. Wei, Solutions to open problems on fuzzy filters of BL-algebras, International Journal of Computational Intelligence Systems 8(1) (2015), 106–113.
[4] I. Chajda, Sheffer operation in ortholattices, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 44(1) (2005), 19–23.
[5] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer, Dordrecht, 1998.
[6] M. Haveshki, A. Borumand Saeid and E. Eslami, Some types of filters in BL-algebra, Soft Computing 10 (2006), 657–662.
[7] M. Haveshki and E. Eslami, n-Fold filters in BL-algebras, MLQ Math. Log. Q. 54(2) (2008), 176–186.
[8] M. Kondo and W. Dudek, Filter theory of BL-algebras, Soft Computing 12 (2008), 419–423.
[9] L. Z. Liu and K. T. Li, Fuzzy filters of BL-algebras, Inform. Sci. 173 (2005), 141–154.
[10] L. Z. Liu and K. T. Li, Fuzzy Boolean and positive implicative filters of BL-algebras, Fuzzy Sets and Systems 152 (2005), 333–348.
[11] W. McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist and L. Wos, Short single axioms for Boolean algebra, J. Automat. Reason. 29(1) (2002), 1–16.
[12] S. Motamed and A. Borumand Saeid, n-Fold obstinate filters in BL-algebras, Neural Computing and Applications 20(4) (2011), 461–472.
[13] S. Motamed, L. Torkzadeh, A. Borumand Saeid and N. Mohtashamnia, Radicals of filters in BL-algebras, MLQ Math. Log. Q. 57(2) (2011), 166–179.
[14] T. Oner, T. Katican and A. Borumand Saeid, Relation between Sheffer stroke and Hilbert algebras, Categ. Gen. Algebr. Struct. Appl. (2020) (to apperar).
[15] T. Oner, T. Katican, A. Borumand Saeid and M. Terziler, Filters of strong Sheffer stroke non-associative MV-algebras, An. Stiint. Univ. “Ovidius” Constanta Ser. Mat. (2020) (to appear).
[16] H. M. Sheffer, A set of five independent postulates for Boolean algebras, with application to logical constants, Trans. Amer. Math. Soc. 14(4) (1913), 481–488.
[17] J. Zhan and Y. Xu, Some types of generalized fuzzy filters of BL-algebras, Comput. Math. Appl. 56(6) (2008), 1604–1616.
[18] M. Xueling, Z. Jianming and X. Yang, Generalized fuzzy filters of BL-algebras, Appl. Math. J. Chinese Univ. Ser. B 22(4) (2007), 490–496.
[19] Y. Yin, and J. Zhan, New types of fuzzy filters of BL-algebras, Comput. Math. Appl. 60(7) (2010), 2115–2125.
[20] L. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.
[21] L. Zadeh, The concepts of a linguistik variable and its application to approximate reason, Information and Control 18 (1975), 199–249.