Estimates for Initial Coefficients of Certain Subclasses of Bi- Close-to-Convex Analytic Functions


Download PDF

Authors: S. BARIK AND A. K. MISHRA

DOI: 10.46793/KgJMat2303.387B

Abstract:

In this paper we find bounds on the modulii of the second, third and fourth Taylor-Maclaurin’s coefficients for functions in a subclass of bi-close-to-convex analytic functions, which includes the class studied by Srivastava et al. as particular case. Our estimates on the second and third coefficients improve upon earlier bounds. The result on the fourth coefficient is new. Our bounds are obtained by refining well known estimates for the initial coefficients of the Carthéodory functions.



Keywords:

Analytic functions, analytic continuation, univalent functions, bi-univalent functions, coefficient bounds.



References:

[1]   R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344–351. https://doi.org/10.1016/j.aml.2011.09.012

[2]   S. Barik, Estimates for initial coefficients in subclasses of bi-univalent analytic functions, Ph. D. Thesis, Berhampur University, India, 2015.

[3]   D. A. Brannan, and J. G. Cluine (Eds.), Aspects of Contemporary Complex Analysis, in: Proceedings of the NATO Advanced Study Institute, University of Durham, Durham, July 1979, 1–20, Academic Press, New York, London, 1980.

[4]   D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, in: S. M. Mazhar, A. Hamoui, N. S. Faour (Eds.), Mathematical Analysis and its Applications, Kuwait, February 1985, 18–21, KFAS Proceedings Series 3, Pergamon Press, Elsevier Science Limited, Oxford, 1998, 53–60. See also Studia Univ. Babes-Bolyai Math. 31(2) (1986), 70–77.

[5]   M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27(7) (2013), 1165–1171. https://doi.org/10.101610.2298/FIL1307165C

[6]   P. N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. 62 (1997), 37–43.

[7]   P. L. Duren, Univalent Functions, Grundlheren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.

[8]   S. S. Ding, Y. Ling and G. J. Bao, Some properties of a class of analytic functions, J. Math. Anal. Appl. 195(1) (1995), 71–81.

[9]   B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569–1573. https://doi.org/10.1016/j.aml.2011.03.048

[10]   A. W. Goodman, Univalent Functions, Vol. I, Mariner Publishing Co. Inc, Tampa, FL, 1983.

[11]   S. G. Hamidi, T. Janani and G. Murugasundaramoorthy, Coefficient estimates for certain classes of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris 352(4) (2014), 287–282. https://doi.org/10.1016/j.crma.2014.01.010

[12]   T. Hayami, and S. Owa, Coefficient bounds for bi-univalent functions, PanAmer. Math. J. 22(4) (2012), 15–26.

[13]   S. S. Kumar, V. Kumar and V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, Tamsui Oxf. J. Inf. Math. Sci. 29(4) (2013), 487–504.

[14]   M. Lewin, On the coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68. https://doi.org/10.1090/S0002-9939-1967-0206255-1

[15]   A. K. Mishra and M. M. Soren, Coefficient bounds for bi-starlike analytic functions, Bull. Belg. Math. Soc. Simon Stevin 21(2) (2014), 157–161.

[16]   E. Natanyahu, The minimal distance of image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Ration. Mech. Anal. 32 (1969), 100–112. https://doi.org/10.1007/BF00247676

[17]   Z. Peng and Q. Han, On the coefficient of several classes of bi-univalent functions, Acta Math. Sci. Ser. B 34(1) (2014), 228–240. https://doi.org/10.1016/S0252-9602(13)60140-X

[18]   H. M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27(5) (2013), 831–842. https://doi.org/DOI10.2298/FIL1305831S

[19]   H. M. Srivastava, A. K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009

[20]   T. S. Taha, Topics in univalent function theory, Ph. D. Thesis, University of London, 1981.

[21]   Q. H. Xu, Y. C. Gui, and H. M. Srivastava, Coefficients for certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990–994. https://doi.org/10.1016/j.aml.2011.11.013