A New Extension of Banach-Caristi Theorem and its Application to Nonlinear Functional Equations
Download PDF
Authors: N. KONWAR, P. DEBNATH, S. RADENOVIC AND H. AYDI
DOI: 10.46793/KgJMat2303.409K
Abstract:
In this paper, we present a new extension of Banach-Caristi type theorem for multivalued mappings. We show that our result is not a consequence of multivalued version of Banach contraction principle due to Nadler. We provide an application of our result to the solution of functional equations.
Keywords:
Fixed point, Banach contraction principle, nonlinear functional equation, metric space, Caristi’s theorem.
References:
[1] R. P. Agarwal and M. A. Khamsi, Extension of Caristi’s fixed point theorem to vector valued metric space, Nonlinear Anal. 74 (2011), 141–145. https://doi.org/10.1016/j.na.2010.08.025
[2] M. U. Ali and T. Kamran, Multi-valued F-contractions and related fixed point theorems with an application, Filomat 30 (2010), 3779–3793. https://doi.org/10.2298/FIL1614779A
[3] M. Boriceanu, A. Petrusel and I. Rus, Fixed point theorems for some multivalued generalized contraction in b-metric spaces, Int. J. Math. Stat. 6 (2010), 65–76.
[4] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241–251. https://doi.org/10.1090/S0002-9947-1976-0394329-4
[5] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti del Seminario Matematico e Fisico dell’Universita di Modena e Reggio Emilia 46 (1998), 263–276.
[6] P. Debnath and H. M. Srivastava, New extensions of Kannan’s and Reich’s fixed point theorems for multivalued maps using Wardowski’s technique with application to integral equations, Symmetry 12(7) (2020), 9 pages. https://doi.org/10.3390/sym12071090
[7] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. https://doi.org/10.1016/0022-247X(74)90025-0
[8] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979), 443–474. https://doi.org/10.1090/S0273-0979-1979-14595-6
[9] Y. Feng and S. Liu, On multivalued Caristi’s type fixed point theorems, J. Math. Anal. Appl. 317 (2006), 103–112. https://doi.org/10.1016/j.jmaa.2005.12.004
[10] J. Jachymski, Caristi’s fixed point theorem and selection of set-valued contractions, J. Math. Anal. Appl. 227 (1998), 55–67. https://doi.org/10.1006/jmaa.1998.6074
[11] E. Karapinar, F. Khojateh and Z. Mitrović, A proposal for revisiting Banach and Caristi type theorems in b-metric spaces, Mathematics 7(308) (2019), 4 pages. https://doi.org/10.3390/math7040308
[12] M. S. Khan, Common fixed point theorems for multivalued mappings, Pac. J. Math 95 (1981), 337–347. https://doi.org/10.2140/pjm.1981.95.337
[13] F. Khojateh, E. Karapinar and H. Khandani, Some applications of Caristis fixed point theorem in metric spaces, Fixed Point Theory Appl. (2016). https://doi.org/10.1186/s13663-016-0501-z
[14] A. Latif, Generalized Caristi’s fixed point theorems, Fixed Point Theory Appl. 2009, Article ID 170140, 7 pages. https://doi.org/10.1155/2009/170140
[15] A. Latif and M. A. Kutbi, On multivalued Caristi’s type fixed point theorems, Acta Univ. Apulensis Math. Inform. 28 (2011), 179–188.
[16] Z. Mitrović, A note on the result of Suzuki, Miculescu and Mihail, J. Fixed Point Theory Appl.21 (2019), Article ID 24. https://doi.org/10.1007/s11784-019-0663-5
[17] S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math. 30(2) (1969), 475–488. https://doi.org/10.2140/pjm.1969.30.475
[18] M. Sgroi and C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat 27 (2013), 1259–1268. https://doi.org/10.2298/FIL1307259S
[19] T. Suzuki, Generalized Caristi’s fixed point theorem by Bae and others, J. Math. Anal. Appl. 302 (2005), 502–508. https://doi.org/10.1016/j.jmaa.2004.08.019
[20] J. D. Weston, A characterization of metric completeness, Proc. Amer. Math. Soc. 64 (1977), 186–188. https://doi.org/10.1090/S0002-9939-1977-0458359-2