The family of Szász-Durrmeyer Type Operators Involving Charlier Polynomials
Download PDF
Authors: N. DEO AND R. PRATAP
DOI: 10.46793/KgJMat2303.431D
Abstract:
In this paper, we consider Szász-Durrmeyer type operators based on Charlier polynomials associated with Srivastava-Gupta operators [?]. For the considered operators, we discuss error of estimation by using first and second order modulus of continuity, Lipchtiz-type space, Ditzian-Totik modulus of smoothness, Voronovskaya type asymptotic formula and weighted modulus of continuity.
Keywords:
Charlier polynomials, Srivastava-Gupta operators, modulus of continuity, Ditzian-Totik modulus of smoothness, weighted modulus of continuity.
References:
[1] A. M. Acu and C. Muraru, Certain approximation properties of Srivastava-Gupta operators, J. Math. Inequal. 12(2) (2018), 583–595. https://dx.doi.org/10.7153/jmi-2018-12-44
[2] R. Chauhan, B. Baxhaku and P. N. Agrawal, Szász type operators involving Charlier polynomials of blending type, Complex Anal. Oper. Theory 13 (2019), 1197–1226. https://doi.org/10.1007/s11785-018-0854-x
[3] N. Deo, Faster rate of convergence on Srivastava-Gupta operators, Appl. Math. Comput. 218(21) (2012), 10486–10491. https://doi.org/10.1016/j.amc.2012.04.012
[4] N. Deo and M. Dhamija, Charlier-Szász-Durrmeyer type linear positive operators, Afr. Mat. 19(1) (2018), 223–232, https://doi.org/10.1007/s13370-017-0537-1
[5] R. A. Devore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, Heidelberg, 1993.
[6] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer series in Computational Mathematics 9, Springer, New York, 1987.
[7] V. Gupta and H. M. Srivastava, A General family of the Srivastava-Gupta operators preserving linear functions, Eur. J. Pure Appl. Math. 11(3) (2018), 575–579, https://doi.org/10.29020/nybg.ejpam.v11i3.3314
[8] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, Cambridge, New York, 2005.
[9] N. Ispir, On modified Baskakov operators on weighted spaces, Turkish J. Math. 26(3) (2001), 355–365.
[10] N. Ispir and I. Yüksel, On the Bézier variant of Srivastava-Gupta operators, Appl. Math. E-Notes 5 (2005), 129–137.
[11] A. Kajla and P. N. Agrawal, Szász-Durrmeyer type operators based on Charlier polynomials, Appl. Math. Comput. 268 (2015), 1001–1014, https://doi.org/10.1016/j.amc.2015.06.126
[12] A. Kumar, V. N. Mishra and D. Tapiawala, Stancu type generalization of modified Srivastava-Gupta operators, Eur. J. Pure Appl. Math. 10(3) (2017), 890–897.
[13] B. Lenze, On Lipschitz maximal functions and their smoothness spaces, Indag. Math. 50(1) (1988), 53–63. https://doi.org/10.1016/1385-7258(88)90007-8
[14] P. Maheswari (Sharma), On modified Srivastava-Gupta operators, Filomat 29(6) (2015), 1173–1177. https://doi.org/10.2307/24898197
[15] M. A. Özarslan and O. Duman, Local approximation properties for certain king type operators, Filomat 27(1) (2013), 173–181. https://doi.org/10.2307/24896345
[16] R. Pratap and N. Deo, Approximation by Genuine Gupta-Srivastava Operators Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113 (2019), 2495–2505. https://doi.org/10.1007/s13398-019-00633-4
[17] H. M. Srivastava and V. Gupta, A certain family of summation-integral type operators, Math. Comput. Modelling 37 (2003), 1307–1315. https://doi.org/10.1016/S0895-7177(03)90042-2
[18] O. Szász, Generalisation of S. Bernstein polynomials to the infinite interval, Journal of Research of the National Bureau of Standards 56 (1950), 239–245.
[19] S. Varma and F. Tasdelen, Szász type operators involving Charlier polynomials, Math. Comput. Modelling 56 (2012), 118–122.
[20] D. K. Verma and P. N. Agrawal, Convergence in simultaneous approximation for Srivastava-Gupta operators, Math. Sci. (Springer) 6 (2012), Article ID 22, 8 pages. https://doi.org/10.1186/2251-7456-6-22
[21] R. Yadav, Approximation by modified Srivastava-Gupta operators, Appl. Math. Comput. 226 (2014), 61–66. https://doi.org/10.1016/j.amc.2013.10.039