On Minimaxity and Limit of Risks Ratio of James-Stein Estimator Under the Balanced Loss Function
Download PDF
Authors: A. HAMDAOUI, A. BENKHALED AND M. TERBECHE
DOI: 10.46793/KgJMat2303.459H
Abstract:
The problem of estimating the mean of a multivariate normal distribution by different types of shrinkage estimators is investigated. Under the balanced loss function, we establish the minimaxity of the James-Stein estimator. When the dimension of the parameters space and the sample size tend to infinity, we study the asymptotic behavior of risks ratio of James-Stein estimator to the maximum likelihood estimator. The positive-part of James-Stein estimator is also treated.
Keywords:
Balanced loss function, James-Stein estimator, minimaxity, multivariate Gaussian random variable, non-central chi-square distribution, risk ratio, shrinkage estimator.
References:
[1] A. J. Baranchik, Multiple Regression and Estimation of the Mean of a Multivariate Normal Distribution, Technical Report 51(1), Stanford University, Stanford, 1964.
[2] A. Benkhaled and A. Hamdaoui, General classes of shrinkage estimators for the multivariate normal mean with unknown variancee: Minimaxity and limit of risks ratios, Kragujevac J. Math. 46(2) (2020), 193–213.
[3] D. Benmansour and A. Hamdaoui, Limit of the ratio of risks of James-Stein estimators with unknown variance, Far East Journal of Theoretical Statistics 36(1) (2011), 31–53.
[4] D. Benmansour and T. Mourid, Etude d’une classe d’estimateurs avec rétrécisseur de la moyenne d’une loi gaussienne, Ann. I.S.U.P. 51 (2007), 83–106.
[5] J. Berger, Admissible minimax estimation of a multivariate normal mean with arbitrary quadratic loss, Ann. Statist. 4(1) (1976), 223–226. https://doi.org/10.1214/aos/1176343356
[6] J. Berger and R. Wolpert, Estimating the mean function of a Gaussian process and the Stein effect, J. Multivariate Anal. 13(3) (1983), 401–424. https://doi.org/10.1016/0047-259X(83)90018-0
[7] P. K. Bhattacharya, Estimating the mean of a multivariate normal population with general quadratic loss function, The Annals of Mathematical Statistics 37(6) (1966), 1819–1824. https://doi.org/10.1214/aoms/1177699174
[8] M. E. Bock, Minimax estimators of the mean of a multivariate normal distribution, Ann. Statist. 3(1) (1975), 209–218. https://doi.org/10.1214/aos/1176343009
[9] G. Casella and J. T. Hwang, Limit expressions for the risk of James-Stein estimators, Canad. J. Statist. 10(4) (1982), 305–309. https://doi.org/10.2307/3556196
[10] N. S. Farsipour and A. Asgharzadeh, Estimation of a normal mean relative to balanced loss functions, Statist. Papers 45(2) (2004), 279–286. https://doi.org/10.1007/BF02777228
[11] A. Hamdaoui and A. Benkhaled and N. Mezouar, Minimaxity and limits of risks ratios of shrinkage estimators of a multivariate normal mean in the bayesian case, Stat. Optim. Inf. Comput. 8(2) (2020), 507–520. https://doi.org/10.19139/soic-2310-5070-735
[12] A. Hamdaoui and D. Benmansour, Asymptotic properties of risks ratios of shrinkage estimators, Hacet. J. Math. Stat. 44(5) (2015), 1181–1195. https://doi.org/10.15672/HJMS.2014377624
[13] A. Hamdaoui and N. Mezouar, Risks ratios of shrinkage estimators for the multivariate normal mean, Journal of Mathematics and Statistics 13(2) (2017), 77–87. https://doi.org/10.3844/jmssp.2017.77.87
[14] A. Hamdaoui, N. Mezouar, D. Benmansour and D. Bouguenna, Examples of shrinkage estimators of the mean, dominating the maximum likelihood estimator in larges dimension, IOSR Journal of Mathematics 12(3) (2016), 14–28. https://doi.org/10.9790/5728-1203041428
[15] B. E. Hansen, The risk of James-Stein and lasso shrinkage, Econometric Rev. 35 (2016), 1465–1470. https://doi.org/10.1080/07474938.2015.1092799
[16] W. James and C. Stein, Estimation with quadratic loss, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, University of California Press, Berkeley, 1961, 361–379.
[17] T. F. Li and W. H. Kio, Generalized James-Stein estimators, Comm. Statist. Theory Methods 11(20) (1982), 2249–2257. https://doi.org/10.1080/03610928208828386
[18] D. V. Lindley, Discussion on Professor Stein’s paper, J. R. Stat. Soc. Ser. B. Stat. Methodol. 24 (1962), 285–287.
[19] K. Selahattin, S. Sadullah, M. R. Özkale and H. Güler, More on the restricted ridge regression estimation, J. Stat. Comput. Simul. 81(11) (2011), 1433–1448. https://doi.org/10.1080/00949655.2010.491480
[20] K. Selahattin and D. Issam, The optimal extended balanced loss function estimators, J. Comput. Appl. Math. 345 (2019), 86–98. https://doi.org/10.1016/j.cam.2018.06.021
[21] P. Shao and W. E. Strawderman, Improving on the James-Stein positive-part estimator of the multivariate normal mean vector for the case of common unknown variances, Ann. Statist. 22(3) (1994), 1517–1539.
[22] C. Stein, Inadmissibilty of the usual estimator for the mean of a multivariate normal distribution, in: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, University of California Press, Berkeley, 1956, 197–206.
[23] C. Stein, Estimation of the mean of a multivariate normal distribution, Ann. Statist. 9(6) (1981), 1135–1151. https://doi.org/10.1214/aos/1176345632
[24] X. Xie, S. C. Kou and L. Brown, Optimal shrinkage estimators of mean parameters in family of distribution with quadratic variance, Ann. Statist. 44(2) (2016), 564–597. https://doi.org/10.1214/15-AOS1377