Quasilinear Parabolic Problem with p(x)-Laplacian Operator by Topological Degree
Download PDF
Authors: M. A. HAMMOU
DOI: 10.46793/KgJMat2304.523H
Abstract:
We prove the existence of a weak solution for the quasilinear parabolic initial boundary value problem associated to the equation
Keywords:
Quasilinear parabolic problems, variable exponents, topological degree, p(x)-Laplacian.
References:
[1] M. Ait Hammou and E. Azroul, Nonlinear elliptic problems in weighted variable exponent Sobolev spaces by topological degree, Proyecciones 38(4) (2019), 733–751. https://doi.org/10.22199/issn.0717-6279-2019-04-0048
[2] M. Ait Hammou, E. Azroul and B. Lahmi, Existence of solutions for p(x)-Laplacian Dirichlet problem by topological degree, Bull. Transilv. Univ. Braşov Ser. III 11(60) (2) (2018), 29–38.
[3] M. Ait Hammou, E. Azroul and B. Lahmi, Topological degree methods for a strongly nonlinear p(x)-elliptic problem, Rev. Colombiana Mat. 53(1) (2019), 27–39.
[4] S. N. Antontsev and S. I. Shmarev, Parabolic equations with double variable nonlinearities, Math. Comput. Simulation 81 (2011), 2018–2032.
[5] A. Ali, M. Sarwar, M. B. Zada and K. Shah, Degree theory and existence of positive solutions to coupled system involving proportional delay with fractional integral boundary conditions, Math. Methods Appl. Sci. (2020), 1–13.
[6] J. Berkovits and V. Mustonen, Topological degree for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems, Rend. Mat. Appl. 12(3) (1992), 597–621.
[7] M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data, J. Differential Equations 249 (2010), 1483–1515.
[8] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer, Basel, 2013.
[9] K. C. Chang, Critical Point Theory and Applications, Shanghai Scientific and Technology Press, Shanghai, 1986.
[10] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383–1406.
[11] L. Diening, Maximal function on generalized Lebesgue spaces Lp(⋅), Math. Inequal. Appl. 7 (2004), 245–253.
[12] L. Diening, P. Harjulehto, P. Hästö and M. R žička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin, Heidelberg, 2011.
[13] G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl. 367 (2010) 204–228.
[14] J. Giacomoni, S. Tiwari and G. Warnault, Quasilinear parabolic problem with p(x)-Laplacian: existence, uniqueness of weak solutions and stabilization, Nonlinear Differ. Equ. Appl. 23 (2016), Article ID 24. https://doi.org/10.1007/s00030-016-0380-3
[15] J. Giacomoni and G. Vallet, Some results about an anisotropic p(x)-Laplace Barenblatt equation, Adv. Nonlinear Anal. 1 (2012), 277–298.
[16] P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal. 25 (2006), 205–222.
[17] O. Kovácik and J. Rákosník, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41(4) (1991), 592–618.
[18] G. Nazir, K. Shah, T. Abdeljawad, H. Khalil and R. A. Khan, Using a prior estimate method to investigate sequential hybrid fractional difierential equations, Fractals 28(8) (2020), Paper ID 2040004, 12 pages. https://doi.org/10.1142/S0218348X20400046
[19] M. R žička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Springer, Berlin, 2000.
[20] M. G. Sher, K. Shah, Y-M. Chu and R. A. Khan, Applicability of topological degree theory to evolution equation with proportional delay, Fractals 28(8) (2020), Article ID 204002, 8 pages. https://doi.org/10.1142/S0218348X20400289
[21] A. Ullah, K. Shah, T. Abdeljawad, R. A. Khan and I. Mahariq, Study of impulsive fractional difierential equation under Robin boundary conditions by topological degree method, Bound. Value Probl. 98 (2020), 1–17.
[22] C. Zhang and S. Zhou, Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1-data, J. Differential Equations 248 (2010), 1376–1400. https://doi.org/10.1016/j.jde.2009.11.024
[23] V. V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), 67–81.
[24] E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer-Verlag, New York, 1990.