Inequalities Among Topological Descriptors


Download PDF

Authors: Z. SHAO, H. JIANG AND Z. RAZA

DOI: 10.46793/KgJMat2305.661S

Abstract:

A topological index is a type of molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are used for example in the development of QSAR QSPR in which the biological activity or other properties of molecules are correlated with their chemical structure. In this paper, we establish several inequalities among the molecular descriptors such as the generalized version of the first Zagreb index, the Randić index, the ABC index, AZI index, and the redefined first, second and third Zagreb indices.



Keywords:

Topological index, ABC index, Randić index, sum-connectivity index, AZI index, inequality.



References:

[1]   A. Ali, A. A. Bhatti and Z. Raza, Further inequalities between vertex-degree-based topological indices, Int. J. Appl. Comput. Math. 3 (2016) 1921–1930. https://doi.org/10.1007/s40819-016-0213-4

[2]   P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and their Inequalities, Reidel, Dordrecht, 1988.

[3]   K. C. Das and S. A. Mojallal, Upper bounds for the energy of graphs, MATCH Commun. Math. Comput. Chem. 70 (2013), 657–662. https://doi.org/10.15672/HJMS.20164513097

[4]    E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian Journal of Chemistry - Section A 37 (1998), 849–855. http://nopr.niscair.res.in/handle/123456789/40308

[5]   S. Fajtlowicz, On conjectures of graffiti II, Congr. Numer. 60 (1987), 187–197.

[6]   G. H. Fath-Tabar, B. Vaez-Zadeh, A. R. Ashrafi and A. Graovac, Some inequalities for the atom-bond connectivity index of graph operations, Discrete Appl. Math. 159 (2011), 1323–1330. https://doi.org/10.1016/j.dam.2011.04.019

[7]   B. Furtula, A. Graovac and D. Vukičević, Augmented Zagreb index, J. Math. Chem. 48 (2010), 370–380. https://doi.org/10.1007/s10910-010-9677-3

[8]   B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), 1184–1190. https://doi.org/10.1007/s10910-015-0480-z

[9]   I. Gutman, A. Ghalavand, T. Dehgjan-Zadeh and A. R. Ashrafi, Graphs with smallest forgotten index, Iranian Journal of Mathematical Chemistry 8(3) (2017), 259–273. https://doi.org/10.22052/ijmc.2017.43258

[10]   I. Gutman and N. Trinajstić, Graph theory and molecular orbitals: Total π-electron energy of alternant hydrocarbons, Chemical Physics Letters 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1

[11]   S. M. Hosamani, Computing Sanskruti index of certain nanostructures, J. Appl. Math. Comput. 54 (2017), 425–433. https://doi.org/10.1007/s12190-016-1016-9

[12]   I. Ž. Milovanovć, E. I. Milovanovć and A. Zakić, A short note on graph energy, MATCH Commun. Math. Comput. Chem. 72(2014), 179–182.

[13]   S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croatica Chemica Acta 76 (2003), 113–124.

[14]   J. Pecarič and S. S. Dragomir, A refinements of Jensen inequality and applications, Stud. Univ. Babes-Bolyai Math. 24 (1989), 15–19.

[15]   M. Randić, The connectivity index 25 years later, Journal of Molecular Graphics and Modelling 20 (2001), 19–35. https://doi.org/10.1016/S1093-3263(01)00098-5

[16]   R. S. Ranjini, V. Lokesha and A. Usha, Relation between phenylene and hexagonal squeeze using harmonic index, Int. J. Graph Theory 1 (2013), 116–121.

[17]   J. M. Rodríguez and J. M. Sigarreta, On the geometric-arithmetic index, MATCH Commun. Math. Comput. Chem. 74 (2015), 103–120.

[18]   J. M. Steele, The Cauchy-Schwarz Master Class, Cambridge University Press, New Yersey, 2004.

[19]   L. Zhong and K. Xu, Inequalities between vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014), 627–642.

[20]   L. Zhong and Q. Cui, On a relation between the atom-bond connectivity and the first geometric-arithmetic indices, Discrete Appl. Math. 185 (2015), 249–253. https://doi.org/10.1016/j.dam.2014.11.027

[21]   B. Zhou and N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009), 1252–1270. https://doi.org/10.1007/s10910-008-9515-z

[22]   B. Zhou and N. Trinajstić, Relations between the product and sum-connectivity indices, Croatica Chemica Acta 85 (2012), 363–365. https://doi.org/10.5562/cca2052