Approximation by an Exponential-Type Complex Operators


Download PDF

Authors: S. G. GAL AND V. GUPTA

DOI: 10.46793/KgJMat2305.691G

Abstract:

In the present paper, we discuss the approximation properties of a complex exponential kind operator. Upper estimate, Voronovskaya-type formula and exact estimate are obtained.



Keywords:

Complex exponential kind operator, approximation properties, upper estimate, Voronovskaya-type formula, exact estimate.



References:

[1]   T. Acar, Asymptotic formulas for generalized Szász-Mirakyan operators, Appl. Math. Comput. 263 (2015), 233–239. https://doi.org/10.1016/j.amc.2015.04.060

[2]   R. P. Agarwal and V. Gupta, On q-analogue of a complex summation-integral type operators in compact disks, J. Inequal. Appl. 2012(1) (2012), Article ID 111. https://doi.org/10.1186/1029-242X-2012-111

[3]   S. G. Gal and V. Gupta, Quantitative estimates for a new complex Durrmeyer operator in compact disks, Appl. Math. Comput. 218(6) (2011), 2944–2951. https://doi.org/10.1016/j.amc.2011.08.044

[4]   S. G. Gal, V. Gupta and N. I. Mahmudov, Approximation by a Durrmeyer-type operator in compact disks, Ann. Univ. Ferrara Sez. VII Sci. Mat. 58(2) (2012), 65–87. https://doi.org/10.1007/s11565-011-0124-6

[5]   S. G. Gal and V. Gupta, Approximation by a complex Post-Widder type operator, Anal. Theory Appl. 34(4) (2018), 297–305. https://doi.org/10.4208/ata.OA-2018-0003

[6]   S. G. Gal, Approximation by Complex Bernstein and Convolution Type Operators, World Scientific, 2009. https://doi.org/10.1142/7426

[7]   S. G. Gal, Overconvergence in Complex Approximation, Springer, New York, 2013. https://doi.org/10.1007/978-1-4614-7098-4

[8]   V. Gupta, Approximation with certain exponential operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114(2) (2020). https://doi.org/10.1007/s13398-020-00792-9

[9]   V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-02765-4

[10]   M. Ismail, Polynomials of binomial type and approximation theory, J. Approx. Theory 23(1978), 177–186. https://doi.org/10.1016/0021-9045(78)90105-3

[11]   M. Ismail and C. P. May, On a family of approximation operators, J. Math. Anal. Appl. 63 (1978), 446–462. https://doi.org/10.1016/0022-247X(78)90090-2

[12]   A. S. Kumar, P. N. Agrawal and T. Acar, Quantitative estimates for a new complex q-Durrmeyer type operators on compact disks, UPB Scientific Bulletin, Series A 80(1) (2018), 191–210.