Existence and Stability of Solutions for Nabla Fractional Difference Systems with Anti-periodic Boundary Conditions


Download PDF

Authors: J. M. JONNALAGADDA

DOI: 10.46793/KgJMat2305.739J

Abstract:

In this paper, we propose sufficient conditions on existence, uniqueness and Ulam-Hyers stability of solutions for coupled systems of fractional nabla difference equations with anti-periodic boundary conditions, by using fixed point theorems. We also support these results through a couple of examples.



Keywords:

Nabla fractional difference equation, anti-periodic boundary conditions, fixed point, existence, uniqueness, Ulam-Hyers stability.



References:

[1]   T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl. 62(3) (2011), 1602–1611. https://doi.org/10.1016/j.camwa.2011.03.036

[2]    T. Abdeljawad and J. Alzabut, On Riemann-Liouville fractional q-difference equations and their application to retarded logistic type model, Math. Methods Appl. Sci. 41(18) (2018), 8953–8962. https://doi.org/10.1002/mma.4743

[3]   T. Abdeljawad, J. Alzabut and H. Zhou, A Krasnoselskii existence result for nonlinear delay Caputo q-fractional difference equations with applications to Lotka-Volterra competition model, Appl. Math. E-Notes 17 (2017), 307–318.

[4]   T. Abdeljawad and F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal. 2012 (2012), Article ID 406757, 13 pages. https://doi.org/10.1155/2012/406757

[5]   R. P. Agarwal, B. Ahmad and J. J. Nieto, Fractional differential equations with nonlocal (parametric type) anti-periodic boundary conditions, Filomat 31(5) (2017), 1207–1214. https://doi.org/10.2298/FIL1705207A

[6]    B. Ahmad and J. J. Nieto, Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory, Topol. Methods Nonlinear Anal. 35(2) (2010), 295–304.

[7]   B. Ahmad and J. J. Nieto, Anti-periodic fractional boundary value problems, Comput. Math. Appl. 62(3) (2011), 1150–1156. https://doi.org/10.1016/j.camwa.2011.02.034

[8]   K. Ahrendt, L. Castle, M. Holm and K. Yochman, Laplace transforms for the nabla-difference operator and a fractional variation of parameters formula, Commun. Appl. Anal. 16(3) (2012), 317–347.

[9]   J. Alzabut, T. Abdeljawad and D. Baleanu, Nonlinear delay fractional difference equations with applications on discrete fractional Lotka-Volterra competition model, J. Comput. Anal. Appl. 25(5) (2018), 889–898.

[10]   J. Alzabut, T. Abdeljawad and H. Alrabaiah, Oscillation criteria for forced and damped nabla fractional difference equations, J. Comput. Anal. Appl. 24(8) (2018), 1387–1394.

[11]   F. M. Atici and P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ. Special Edition I (3) (2009), 1–12. https://doi.org/10.14232/EJQTDE.2009.4.3

[12]   H. Baghani, J. Alzabut and J. J. Nieto, A coupled system of Langevin differential equations of fractional order and associated to antiperiodic boundary conditions, Math. Methods Appl. Sci. (2020), 1–11. https://doi.org/10.1002/mma.6639

[13]   M. Benchohra, N. Hamidi and J. Henderson, Fractional differential equations with anti-periodic boundary conditions, Numer. Funct. Anal. Optim. 34(4) (2013), 404–414. https://doi.org/10.1080/01630563.2012.763140

[14]   M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, MA, 2001.

[15]   A. Brackins, Boundary value problems of nabla fractional difference equations, Ph. D. Thesis, The University of Nebraska-Lincoln, Nebraska-Lincoln, 2014.

[16]   G. Chai, Anti-periodic boundary value problems of fractional differential equations with the Riemann-Liouville fractional derivative, Adv. Difference Equ. 306 (2013), 1–24. https://doi.org/10.1186/1687-1847-2013-306

[17]   C. Chen, M. Bohner and B. Jia, Ulam-Hyers stability of Caputo fractional difference equations, Math. Methods Appl. Sci. (2019), 1–10. https://doi.org/10.1002/mma.5869

[18]   F. Chen and Y. Zhou, Existence and Ulam stability of solutions for discrete fractional boundary value problem, Discrete Dyn. Nat. Soc. (2013), Article ID 459161, 7 pages. https://doi.org/10.1155/2013/459161

[19]   Y. Chen, J. J. Nieto and D. O’Regan, Anti-periodic solutions for fully nonlinear first-order differential equations, Math. Comput. Model. 46(9–10) (2007), 1183–1190. https://doi.org/10.1016/j.mcm.2006.12.006

[20]   Y. Gholami and K. Ghanbari, Coupled systems of fractional -difference boundary value problems, Differ. Equ. Appl. 8(4) (2016), 459–470. https://dx.doi.org/10.7153/dea-08-26

[21]   C. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer, Cham, 2015.

[22]   J. Hein, S. McCarthy, N. Gaswick, B. McKain and K. Speer, Laplace transforms for the nabla difference operator, PanAmer. Math. J. 21 (2011), 79–96.

[23]   D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222

[24]   A. Ikram, Lyapunov inequalities for nabla Caputo boundary value problems, J. Difference Equ. Appl. 25(6) (2019), 757–775. https://doi.org/10.1080/10236198.2018.1560433

[25]   J. J. Mohan, Hyers-Ulam stability of fractional nabla difference equations, Int. J. Anal. (2016), Article ID 7265307, 1–5. https://doi.org/10.1155/2016/7265307

[26]   J. M. Jonnalagadda, On two-point Riemann-Liouville type nabla fractional boundary value problems, Adv. Dyn. Syst. Appl. 13(2) (2018), 141–166.

[27]   J. M. Jonnalagadda, Existence results for solutions of nabla fractional boundary value problems with general boundary conditions, Advances in the Theory of Nonlinear Analysis and its Application 4(1) (2020), 29–42. https://doi.org/10.31197/atnaa.634557

[28]   S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.

[29]   W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Applications, Second edition, Harcourt/Academic Press, San Diego, CA, 2001.

[30]   A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006.

[31]   J. Liu and Z. Liu, On the existence of anti-periodic solutions for implicit differential equations, Acta Math. Hungar. 132(3) (2011), 294–305. https://doi.org/10.1007/s10474-010-0054-2

[32]   J. W. Lyons and J. T. Neugebauer, A difference equation with anti-periodic boundary conditions, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22(1) (2015), 47–60.

[33]   M. M. Matar, J. Alzabut and J. M. Jonnalagadda, A coupled system of nonlinear Caputo-Hadamard Langevin equations associated with nonperiodic boundary conditions, Math. Methods Appl. Sci. (2020), 1–21. https://doi.org/10.1002/mma.6711

[34]   I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering 198, Academic Press, San Diego, CA, 1999.

[35]   T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(2) (1978), 297–300. https://doi.org/10.2307/2042795

[36]   J. Sun, Y. Liu and G. Liu, Existence of solutions for fractional differential systems with anti-periodic boundary conditions, Comput. Math. Appl. 64(6) (2012), 1557–1566. https://doi.org/10.1016/j.camwa.2011.12.083

[37]   D. R. Smart, Fixed Point Theorems, Cambridge Tracts in Mathematics 66, Cambridge University Press, London-New York, 1974.

[38]   S. A. Ulam, Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics 8, New York, London, Interscience Publishers, 1960.

[39]   C. Urs, Coupled fixed point theorems and applications to periodic boundary value problems, Miskolc Math. Notes 14(1) (2013), 323–333. https://doi.org/10.18514/MMN.2013.598

[40]   Y. Wang and Y. Shi, Eigenvalues of second-order difference equations with periodic and anti-periodic boundary conditions, J. Math. Anal. Appl. 309(1) (2005), 56–69. https://doi.org/10.1016/j.jmaa.2004.12.010

[41]   A. Zada, H. Waheed, J. Alzabut and X. Wang, Existence and stability of impulsive coupled system of fractional integrodifferential equations, Demonstr. Math. 52(1) (2019), 296–335. https://doi.org/10.1515/dema-2019-0035

[42]   H. Zhang and W. Gao, Existence and uniqueness results for a coupled system of nonlinear fractional differential equations with anti-periodic boundary conditions, Abstr. Appl. Anal. (2014), Article ID 463517, 7 pages. https://doi.org/10.1155/2014/463517