Approximating Solutions of Monotone Variational Inclusion, Equilibrium and Fixed Point Problems of Certain Nonlinear Mappings in Banach Spaces
Download PDF
Authors: H. A. ABASS, C. IZUCHUKWU AND O. T. MEWOMO
DOI: 10.46793/KgJMat2305.777A
Abstract:
In this paper, motivated by the works of Timnak et al. [Filomat 31(15) (2017), 4673–4693], Ogbuisi and Izuchukwu [Numer. Funct. Anal. 40(13) (2019)] and some other related results in literature, we introduce an iterative algorithm and employ a Bregman distance approach for approximating a zero of the sum of two monotone operators, which is also a common solution of equilibrium problem involving pseudomonotone bifunction and a fixed point problem for an infinite family of Bregman quasi-nonexpansive mappings in the framework of a reflexive Banach space. Using our iterative algorithm, we state and prove a strong convergence result for approximating a common solution of the aforementioned problems. Furthermore, we give some applications of the consequences of our main result to convex minimization problem and variational inequality problem. Lastly, we display a numerical example to show the applicability of our main result. The result presented in this paper extends and complements many related results in the literature.
Keywords:
Equilibrium problem, Bregman quasi-nonexpansive, monotone operators, iterative scheme, fixed point problem.
References:
[1] M. Abbas, B. Ali, T. Nazir, N. M. Dedović, B. Bin-Mhsin and S. N. Radenović, Solutions and Ulam-Hyers stability of differential inclusions involving Suzuki type multivalued mappings on b-metric spaces, Vojnotehnički Glasnik/Military Technical Courier 68(3) (2020), 438–487.
[2] H. A. Abass, F. U. Ogbuisi and O. T. Mewomo, Common solution of split equilibrium problem with no prior knowledge of operator norm, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80(1) (2018), 175–190.
[3] H. A. Abass, C. C. Okeke and O. T. Mewomo, On split equality mixed equilibrium and fixed point problems of generalized ki-strictly pseudo-contractive multivalued mappings, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 25(6) (2018), 369–395.
[4] T. O. Alakoya, L. O. Jolaoso and O. T. Mewomo, Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization (2020). https://doi.org/10.1080/02331934.2020.1723586
[5] T. O. Alakoya, L. O. Jolaoso and O. T. Mewomo, A general iterative method for finding common fixed point of finite family of demicontractive mappings with accretive variational inequality problems in Banach spaces, Nonlinear Stud. 27(1) (2020), 1–24.
[6] K. Aoyama, Y. Kamimura, W. Takahashi and M. Toyoda, Approximation of common fixed point of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 2350–2360. https://doi.org/10.1016/j.na.2006.08.032
[7] K. O. Aremu, H. A. Abass, C. Izuchukwu and O. T. Mewomo, A viscosity-type algorithm for an infinitely countable family of (f,g)-generalized k-strictly pseudononspreading mappings in CAT(0) spaces, Analysis (Berlin) 40(1) (2020), 19–37. https://doi.org/10.1515/anly-2018-0078
[8] K. O. Aremu, C. Izuchukwu, G. N. Ogwo and O. T. Mewomo, Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces, J. Ind. Manag. Optim. (2020). https://doi.org/10.3934/jimo.2020063
[9] K. O. Aremu, L. O. Jolaoso, C. Izuchukwu and O. T. Mewomo, Approximation of common solution of finite family of monotone inclusion and fixed point problems for demicontractive multivalued mappings in CAT(0) spaces, Ric. Mat. 69(1) (2020), 13–34. https://doi.org/10.1007/s11587-019-00446-y
[10] H. H. Bauschke, J. M. Borwein and P. L. Combettes, Essentially smoothness, essentially strict convexity and Legendre functions in Banach spaces, Commun. Contemp. Math. 3 (2001), 615–647.
[11] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123–145.
[12] L. M. Bregman, The relaxation method for finding the common point of convex sets and its application to solution of problems in convex programming, USSR Computational Mathematics and Mathematical Physics 7 (1967), 200–217.
[13] M. Borwein, S. Reich and S. Sabach, A characterization of Bregman firmly nonexpansive opertors using a new monotonicity concept, J. Nonlinear Convex Anal. 12 (2011), 161–184.
[14] D. Butnairu and E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. 2006 (2006), Article ID 84919, 39 pages. https://doi.org/10.1155/AAA/2006/84919
[15] D. Butnairu, S. Reich and A. J. Zaslavski, There are many totally convex functions, J. Convex Anal. 13 (2006), 623–632.
[16] I. Cioranescu, Geometry of Banach spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
[17] H. Dehghan, C. Izuchukwu, O. T. Mewomo, D. A. Taba and G. C. Ugwunnadi, Iterative algorithm for a family of monotone inclusion problems in CAT(0) spaces, Quaest. Math. 43(7) (2020), 975–998. https://doi.org/10.2989/16073606.2019.1593255
[18] G. Z. Eskandani, M. Raeisi and T. M. Rassias, A hybrid extragradient method for solving pseudomonotone equilibrium problem using Bregman distance, J. Fixed Point Theory Appl. 20 (2018), Article ID 132, 27 pages. https://doi.org/10.1007/s11784-018-0611-9
[19] A. Gibali, L. O. Jolaoso, O. T. Mewomo and A. Taiwo, Fast and simple Bregman projection methods for solving variational inequalities and related problems in Banach spaces, Results Math. 75 (2020), Article ID 179, 36 pages. https://doi.org/10.1007/s00025-020-01306-0
[20] H. Iiduka, Acceleration method for convex optimization over the fixed point set of a nonexpansive mappings, Math. Prog. Series A 149 (2015), 131–165. https://doi.org/10.1007/s10107-013-0741-1
[21] C. Izuchukwu, A. A. Mebawondu and O. T. Mewomo, A new method for solving split variational inequality problems without co-coerciveness, J. Fixed Point Theory Appl. 22(4) (2020), Article ID 98, 23 pages. https://doi.org/10.1007/s11784-020-00834-0
[22] C. Izuchukwu, G. N. Ogwo and O. T. Mewomo, An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions, Optimization (2020). https://doi.org/10.1080/02331934.2020.1808648
[23] L. O. Jolaoso, T. O. Alakoya, A. Taiwo and O. T. Mewomo, A parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problems, Rend. Circ. Mat. Palermo (2) 69(3) (2020), 711–735. https://doi.org/10.1007/s12215-019-00431-2
[24] L. O. Jolaoso, A. Taiwo, T. O. Alakoya and O. T. Mewomo, A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem, Comput. Appl. Math. 39(1) (2020), Article ID 38, 28 pages. https://doi.org/10.1007/s40314-019-1014-2
[25] L. O. Jolaoso, A. Taiwo, T. O. Alakoya and O. T. Mewomo, Strong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach space, J. Optim. Theory Appl. 185(3) (2020), 744–766. https://doi.org/10.1007/s10957-020-01672-3
[26] Z. Jouymandi and F. Moradlou, Retraction algorithms for solving variational inequalities, pseudomonotone equilibrium problems and fixed point problems in Banach spaces, Numer. Algorithms 78 (2018), 1153–1182. https://doi.org/10.1007/s11075-017-0417-7
[27] G. Kassay, S. Reich and S. Sabach, Iterative methods for solving systems of variational inequalities in Banach spaces, SIAM J. Optim. 21 (2011), 1319–1344.
[28] V. Manojlović, On conformally invariant extremal problems, Appl. Anal. Discrete Math. 3(1) (2009), 97–119. https://doi.org/10.2298/AADM0901097M
[29] V. Martin Marquez, S. Reich and S. Sabach, Bregman strongly nonexpansive operators in reflexive Banach spaces, J. Math. Anal. Appl. 400 (2013), 597–614. https://doi.org/10.1016/j.jmaa.2012.11.059
[30] V. Martin Marquez, S. Reich and S. Sabach, Iterative methods for approximating fixed point points of Bregman nonexpansive operators, Discrete Contin. Dyn. Syst. Ser. S 6(4) (2013), 1043–1063. https://doi:10.3934/dcdss.2013.6.1043
[31] Z. D. Mitrović, S. Radenović, S. Reich and A. Zaslavski, Iterating nonlinear contractive mappings in Banach spaces, Carpathian J. Math. 36 (2) (2020), 287–294.
[32] F. U. Ogbuisi and O. T. Mewomo, Iterative solution of split variational inclusion problem in a real Banach spaces, Afr. Mat. 28 (2017), 295–309. https://doi.org/10.1007/s13370-016-0450-z
[33] F. U. Ogbuisi and C. Izuchukwu, Approxiamting a zero of sum of two monotone operators which solves a fixed point problem in reflexive Banach spaces, Numer. Funct. Anal. 41(3) (2020), 322–343. https://doi.org/10.1080/01630563.2019.1628050
[34] G. N. Ogwo, C. Izuchukwu, K. O. Aremu and O. T. Mewomo, A viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard space, Bull. Belg. Math. Soc. Simon Stevin 27 (2020), 127–152.
[35] O. K. Oyewole, H. A. Abass and O. T. Mewomo, Strong convergence algorithm for a fixed point constraint split null point problem, Rend. Circ. Mat. Palermo (2) (2020). https://doi.org/10.1007/s12215-020-00505-6
[36] O. K. Oyewole, L. O. Jolaoso, C. Izuchukwu and O. T. Mewomo, On approximation of common solution of finite family of mixed equilibrium problems involving μ − α relaxed monotone mapping in a Banach space, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81(1) (2019), 19–34.
[37] D. Reem and S. Reich, Solutions to inexact resolvent inclusion problems with applications to nonlinear analysis and optimization, Rend. Circ. Mat. Palermo (2) 67 (2018), 337–371. https://doi.org/10.1007/s12215-017-0318-6
[38] D. Reem, S. Reich and A. De Pierro, Re-examination of Bregman functions and new properties of their divergences, Optimization 68 (2019), 279–348. https://doi.org/10.1080/02331934.2018.1543295
[39] S. Reich and S. Sabach, Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces, Contemp. Math. 568 (2012), 225–240.
[40] S. Reich, A Weak Convergence Theorem for the Alternating Method with Bregman Distances, Theory and Applications of Nonlinear Operators, Marcel Dekker, New York, 1996, 313–318.
[41] S. Reich and S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal. 10 (2009), 471–485.
[42] S. Reich and S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim. 31 (2010), 24–44. https://doi.org/10.1080/01630560903499852
[43] F. Schopfer, T. Schuster and A. K. Louis, An iterative regularization method for the solution of the split feasibilty problem in Banach spaces, Inverse Probl. 24(5) (2008), Article ID 055008.
[44] A. Taiwo, T. O. Alakoya and O. T. Mewomo, Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces, Numer. Algorithms (2020). https://doi.org/10.1007/s11075-020-00937-2
[45] A. Taiwo, L. O. Jolaoso and O. T. Mewomo, A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces, Comput. Appl. Math. 38(2) (2019), Article ID 77. https://doi.org/10.1007/s40314-019-0841-5
[46] A. Taiwo, L. O. Jolaoso and O. T. Mewomo, Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems, Bull. Malays. Math. Sci. Soc. 43 (2020), 1893–1918. https://doi.org/10.1007/s40840-019-00781-1
[47] A. Taiwo, L. O. Jolaoso and O. T. Mewomo, General alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spaces, Ric. Mat. 69(1) (2020), 235–259. https://doi.org/10.1007/s11587-019-00460-0
[48] A. Taiwo, L. O. Jolaoso and O. T. Mewomo, Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert Spaces, J. Ind. Manag. Optim. (2020). https://doi.org/10.3934/jimo.2020092
[49] A. Taiwo, L. O. Jolaoso, O. T. Mewomo and A. Gibali, On generalized mixed equilibrium problem with α-β-μ bifunction and μ-τ monotone mapping, J. Nonlinear Convex Anal. 21(6) (2020), 1381–1401.
[50] A. Taiwo, A. O.-E. Owolabi, L. O. Jolaoso, O. T. Mewomo and A. Gibali, A new approximation scheme for solving various split inverse problems, Afr. Mat. (2020). https://doi.org/10.1007/s13370-020-00832-y
[51] S. Timnak, E. Naraghirad and N. Hussain, Strong convergence of Halpern iteration for products of finitely many resolvents of maximal monotone operators in Banach spaces, Filomat 31(15) (2017), 4673–4693.
[52] J. V. Tie, Convex Analysis: An Introductory Text, Wiley, New York, 1984.
[53] V. Todorčević, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, Springer Nature Switzerland AG, 2019.
[54] F. Q. Xia and N. J. Huang, Variational inclusions with a general H-monotone operators in Banch spaces, Comput. Math. Appl. 54(1) (2010), 24-30. https://doi.org/10.1016/j.camwa.2006.10.028
[55] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co. Inc., River Edge NJ, 2002.