On a Generalized Drygas Functional Equation and its Approximate Solutions in 2-Banach Spaces
![](../images/pdf.png)
Authors: M. E. HRYROU AND S. KABBAJ
DOI: 10.46793/KgJMat2305.801H
Abstract:
In this paper, we introduce and solve the following generalized Drygas functional equation
![f (x + ky ) + f (x − ky ) = 2f (x ) + k2f (y ) + k2f (− y ),](f9334dcfe0ca9cebd4ff4f1eb44fe86f0x.png)
Keywords:
Stability, hyperstability, Drygas functional equation, fixed point method, 2-Banach space.
References:
[1] M. Almahalebi, On the hyperstability of σ-Drygas functional equation on semigroups, Aequationes Math. 90(4) (2016), 849–857. https://doi.org/10.1007/s00010-016-0422-2
[2] M. Almahalebi and A. Chahbi, Approximate solution of p-radical functional equation in 2-Banach spaces, Acta Math. Scientia. 39(2) (2019), 551–566. https://doi.org/10.1007/s10473-019-0218-2
[3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064
[4] A. Bahyrycz and M. Piszczek, Hyperstability of the Jensen functional equation, Acta Math. Hungar. 142 (2014), 353–365. https://doi.org/10.1007/s10474-013-0347-3
[5] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385–397. https://doi.org/10.1215/S0012-7094-49-01639-7
[6] J. Brzdȩk, Stability of additivity and fixed point methods, Fixed Point Theory Appl. 2013 (2013), Article ID 265. https://doi.org/10.1186/1687-1812-2013-285
[7] J. Brzdȩk, Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungar. 141 (2013), 58–67. https://doi.org/10.1007/s10474-013-0302-3
[8] J. Brzdȩk, Remarks on hyperstability of the Cauchy functional equation, Aequationes Math. 86 (2013), 255–267. https://doi.org/10.1007/s00010-012-0168-4
[9] J. Brzdȩk, A hyperstability result for the Cauchy equation, Bull. Aust. Math. Soc. 89 (2014), 33–40. https://doi.org/10.1017/S0004972713000683
[10] J. Brzdȩk, L. Cadăriu and K. Ciepliński, Fixed point theory and the Ulam stability, J. Funct. Spaces 2014 (2014), Article ID 829419. https://doi.org/16.10.1007/s11784-016-0288-x
[11] J. Brzdȩk, W. Fechner, M. S. Moslehian and J. Sikorska, Recent developments of the conditional stability of the homomorphism equation, Banach J. Math. Anal. 9 (2015), 278–327. https://doi.org/10.15352/bjma/09-3-20
[12] J. Brzdȩk, J. Chudziak and Zs. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal. 74 (2011), 6728–6732. https://doi.org/10.1016/j.na.2011.06.052
[13] J. Brzdȩk and K. Ciepliński, Hyperstability and superstability, Abs. Appl. Anal. 2013 (2013), Article ID 401756, 13 pages. https://doi.org/10.1016/j.na.2011.06.052.10.1155/2013/401756
[14] J. Brzdȩk and K. Ciepliński, On a fixed point theorem in 2-Banach spaces and some of its applications, Acta Math. Sci. 38(2) (2018), 377–744.https://doi.org/10.1016/S0252-9602(18)30755-0
[15] J. Brzdȩk and K. Ciepliński, A fixed point theorem in n-Banach spaces and Ulam stability, J. Math. Anal. Appl. 470 (2019), 632–646. https://doi.org/10.1016/j.jmaa.2018.10.028
[16] J. Brzdȩk and El-S. El-Hady, On approximately additive mappings in 2-Banach spaces, Bull. Aust. Math. Soc. (2019). https://doi.org/10.1017/S0004972719000868
[17] Y. J. Cho, C. Park and M. Eshaghi Gordji, Approximate additive and quadratic mappings in 2-Banach spaces and related topics, Int. J. Nonlinear Anal Appl. 3(2) (2012), 75–81. https://dx.doi.org/10.22075/ijnaa.2012.55
[18] S. C. Chung and W.-G. Park, Hyers-Ulam stability of functional equations in 2-Banach spaces, Int. J. Math. Anal. (Ruse) 6(17/20) (2012), 951–961. https://dx.doi.org/10.22075/ijnaa.2012.55
[19] K. Ciepliński, Approximate multi-additive mappings in 2-Banach spaces, Bull. Iranian Math. Soc. 41(3) (2015), 785–792.
[20] K. Ciepliński and T. Z. Xu, Approximate multi-Jensen and multi-quadratic mappings in 2-Banach spaces, Carpathian J. Math. 29(2) (2013), 159–166.
[21] H. Drygas, Quasi-Inner Products and their Applications, Springer, Netherlands, 1987, 13–30.
[22] B. R. Ebanks, P. L. Kannappan and P. K. Sahoo, A common generalization of functional equations characterizing normed and quasi-inner-product spaces, Canad. Math. Bull. 35(3) (1992), 321–327. https://doi.org/10.4153/CMB-1992-044-6
[23] S. Ghler, 2-metrische Räume und ihre topologische Struktur,
Math. Nachr. 26 (1963), 115–148.
[24] S. Gähler, Linear 2-normiete Räumen, Math. Nachr. 28 (1964), 1–43.
[25] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211
[26] J. Gao, On the stability of the linear mapping in 2-normed spaces, Nonlinear Funct. Anal. Appl. 14(5) (2009), 801–807.
[27] E. Gselmann, Hyperstability of a functional equation, Acta Math. Hungar. 124 (2009), 179–188. https://doi.org/10.1007/s10474-009-8174-2
[28] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222–224. https://dx.doi.org/10.1073%2Fpnas.27.4.222
[29] S.-M. Jung and P. K. Sahoo, Stability of a functional equation of Drygas, Aequationes Math. 64(3) (2002), 263–273. https://doi.org/10.1007/PL00012407
[30] Gy. Maksa and Zs. Páles, Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 17 (2001), 107–112.
[31] W.-G. Park, Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl. 376 (2011), 193–202. https://doi.org/10.1016/j.jmaa.2010.10.004
[32] M. Piszczek and J. Szczawińska, Hyperstability of the Drygas Functional Equation, J. Funct. Spaces 2013 (2013). http://dx.doi.org/10.1155/2013/912718
[33] M. M. Piszczek, Remark on hyperstability of the general linear equation, Aequationes Math. 88 (2014), 163–168. https://doi.org/10.1007/s00010-013-0214-x
[34] Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
[35] P. K. Sahoo and Pl. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, Florida, 2011.
[36] M. Sirouni and S. Kabbaj, A fixed point approach to the hyperstability of Drygas functional equation in metric spaces, J. Math. Comput. Sci. 4(4) (2014), 705–715.
[37] W. Smajdor, On set-valued solutions of a functional equation of Drygas, Aequationes Math. 77 (2009), 89–97. https://doi.org/10.1007/s00010-008-2935-9
[38] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.