Controlled Integral Frames for Hilbert $C^{\ast}$-Modules
Download PDF
Authors: H. LABRIGUI AND S. KABBAJ
DOI: 10.46793/KgJMat2306.877L
Abstract:
The notion of controlled frames for Hilbert spaces were introduced by Balazs, Antoine and Grybos to improve the numerical efficiency of iterative algorithms for inverting the frame operator. Controlled frame theory has a great revolution in recent years. This theory have been extended from Hilbert spaces to Hilbert C∗-modules. In this paper we introduce and study the extension of this notion to integral frame for Hilbert C∗-modules. Also we give some characterizations between integral frame in Hilbert C∗-modules.
Keywords:
Integral frames, integral ∗-frame, controlled integral frames, controlled integral ∗-frame, C∗-algebra, Hilbert ????-modules.
References:
[1] S. T. Ali, J. P. Antoine and J. P. Gazeau, Continuous frames in Hilbert spaces, Ann. Physics 222 (1993), 1-37. https://doi.org/10.1006/aphy.1993.1016
[2] A. Alijani and M. Dehghan, ∗-Frames in Hilbert C∗-modules, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 73(4) (2011), 89–106.
[3] L. Arambašić, On frames for countably generated Hilbert C∗-modules, Proc. Amer. Math. Soc. 135 (2007), 469–478. https://doi.org/10.2307/20534595
[4] N. Assila, S. Kabbaj and B. Moalige, Controlled K-fusion frame for Hilbert spaces, Moroccan Journal of Pure and Applied Analysis 7(1) (2021), 116–133. https://doi.org/10.2478/mjpaa-2021-0011
[5] O. Christensen, An Introduction to Frames and Riesz Bases, Brikhuser, Boston, 2003. https://doi.org/10.1007/978-3-319-25613-9
[6] J. B. Conway, A Course in Operator Theory, Amer. Math. Soc., Providence, RI, 2000.
[7] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271–1283. https://doi.org/10.1063/1.527388
[8] F. R. Davidson, C∗-Algebra by Example, Providence, RI, 1996.
[9] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366. https://doi.org/10.2307/1990760
[10] N. Dunford and J. T. Schwartz, Linear Operators: Part I General Theory, Interscience Publishers, New York, 1958.
[11] J. P. Gabardo and D. Han, Frames associated with measurable space, Adv. Comput. Math. 18 (2003), 127–147. https://doi.org/10.1023/A:1021312429186
[12] D. Gabor, Theory of communications, Journal of the Institution of Electrical Engineers 93(26) (1946), 429–457. https://doi.org/10.1049/JI-3-2.1946.0074
[13] S. Kabbaj, H. Labrigui and A. Touri, Controlled continuous g-frames in Hilbert C∗-modules, Moroccan Journal of Pure and Applied Analysis 6(2) (2020), 184–197. https://doi.org/10.2478/mjpaa-2020-0014
[14] S. Kabbaj and M. Rossafi, ∗-Operator frame for End????∗(ℋ), Wavelets and Linear Algebra 5(2) (2018), 1–13. https://doi.org/10.22072/WALA.2018.79871.1153
[15] H. Labrigui and S. Kabbaj, Integral operator frames for B(ℋ), Journal of Interdisciplinary Mathematics 23(8) (2020), 1519–1529. https://doi.org/10.1080/09720502.2020.1781884
[16] H. Labrigui, A. Touri and S. Kabbaj, Controlled Operator frames for End????∗(ℋ), Asian Journal of Mathematics and Applications 2020 (2020), Article ID ama0554, 13 pages.
[17] E. C. Lance, Hilbert C∗-Modules: A Toolkit for Operator Algebraist, London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 1995.
[18] Z. A. Moosavi and A. Nazari, Controlled ∗-G-Frames and their ∗-G-Multipliers in Hilbert C∗-Modules, Casp. J. Math. Sci. 8(2) (2019), 120–136. https://doi.org/10.28924/2291-8639-17-2019-1
[19] W. Paschke, Inner product modules over B∗-algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468. https://doi.org/10.2307/1996542
[20] M. Rahmani, On some properties of C-frames, J. Math. Res. Appl. 37(4) (2017), 466–476. http://doi.org/10.3770/j.issn:2095-2651.2017.04.008
[21] M. Rahmani, Sum of C-frames, C-Riesz bases and orthonormal mapping, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 77(3) (2015), 3–14.
[22] A. Rahmani, A. Najati and Y. N. Deghan, Continuous frames in Hilbert spaces, Methods Funct. Anal. Topology 12(2) (2006), 170–182.
[23] M. Rossafi and A. Akhlidj, Perturbation and stability of operator frame for End????∗(ℋ), Math-Recherche and Applications 16(1) (2018), 65–81.
[24] M. Rossafi, A. Bourouihiya, H. Labrigui and A. Touri, The duals of ∗-operator Frame for End????∗(ℋ), Asia Mathematika 4(1) (2020), 45–52.
[25] M. Rossafi and S. Kabbaj, ∗-K-operator frame for End????∗(ℋ), Asian-Eur. J. Math. 13(3) (2020), Paper ID 2050060, 11 pages. https://doi.org/10.1142/S1793557120500606
[26] M. Rossafi and S. Kabbaj, ∗-K-g-frames in Hilbert ????-modules, Journal of Linear and Topological Algebras 7(1) (2018), 63–71.
[27] M. Rossafi and S. Kabbaj, ∗-g-Frames in tensor products of Hilbert C∗-modules, Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018), 17–25. https://doi.org/10.2478/aupcsm-2018-0002
[28] M. Rossafi and S. Kabbaj, K-Operator frame for End????∗(ℋ), Asia Mathematika 2(2) (2018), 52–60.
[29] M. Rossafi and S. Kabbaj, Frames and operator frames for B(ℋ), Asia Mathematika 2(3) (2018), 19–23.
[30] M. Rossafi and S. Kabbaj, Generalized Frames for B(ℋ,????), Iran. J. Math. Sci. Inform. (2019), (to appear).
[31] M. Rossafi and S. Kabbaj, Operator frame for End????∗(ℋ), Journal of Linear and Topological Algebras 8(2) (2019), 85–95.
[32] M. Rossafi, A. Touri, H. Labrigui and A. Akhlidj, Continuous ∗-K-G-frame in Hilbert C∗-Modules, J. Funct. Spaces 2019 (2019), 5 pages. https://doi.org/10.1155/2019/2426978
[33] K. Yosida, Functional Analysis, Springer-Verlag, Berlin, Heidelberg, 1980. https://doi.org/10.1007/978-3-642-96439-8