An Open Mapping Theorem for Order-Preserving Operators
Download PDF
Authors: LJ. D. R. KOčINAC, F. S. AKTAMOV AND A. A. ZAITOV
DOI: 10.46793/KgJMat2307.1057K
Abstract:
In the main result of this paper we prove a version of the well-known open mapping theorem for weakly additive, order-preserving operators between ordered real vector spaces with an order unit. We also provide a few examples to illustrate obtained results.
Keywords:
Ordered vector space, order unit, order-preserving mapping, weakly additive operator, open mapping theorem .
References:
[1] S. Albeverio, Sh. A. Ayupov and A. A. Zaitov, On certain properties of the spaces of order-preserving functionals, Topology Appl. 155(16) (2008), 1792–1799. https://doi.org/10.1016/j.topol.2008.05.019
[2] Sh. A. Ayupov and A. A. Zaitov, Slabo additivnye funkcionaly na lineĭnyh prostranstvah, Doklady AN RUz 4-5 (2006), 7–12.
[3] Sh. A. Ayupov and A. A. Zaitov, Printsip ravnomernoĭ ogranichennosti dlya slabo additivnyh operatorov, Uzbekskiĭ Mat. Zh. 4 (2006), 3–10.
[4] S. Banach, Théorie des Opérations Linéaires, Monografie Matematyczne, Vol. 1, Warszawa, 1932.
[5] S. Z. Ditor and L. Eifler, Some open mapping theorems for measures, Trans. Amer. Math. Soc. 164 (1972), 287–293. https://doi.org/10.1090/S0002-9947-1972-0477729-X
[6] L. Q. Eifler, Open mapping theorems for probability measures on metric spaces, Pacific J. Math. 66(1) (1976), 89–97. https://doi.org/10.2140/pjm.1976.66.89
[7] S. S. Gabriyelyan and S. Morris, An open mapping theorem, Bull. Aust. Math. Soc. 94(1) (2016), 65–69. https://doi.org/10.1017/S000497271500146X
[8] C. Garetto, Closed graph and open mapping theorems for topological modules and applications, Math. Nachr. 282(8) (2009), 1159–1188. https://doi.org/10.1002/mana.200610793
[9] G. Gentili and C. Stoppato, The open mapping theorem for regular quaternionic functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. 8(4) (2009), 805–815.
[10] Sh. Koshi and M. Takesaki, An open mapping theorem on homogeneous spaces, J. Aust. Math. Soc., Ser. A. 53(1) (1992), 51–54. https://doi.org/10.1017/S1446788700035382
[11] D. Noll, Open mapping theorems in topological spaces, Czechoslovak Math. J. 35(110)(3) (1985), 373–384. https://doi.org/10.21136/CMJ.1985.102027
[12] V. Pták, Completeness and the open mapping theorem, Bull. Soc. Math. France 86 (1958), 41–74. https://doi.org/10.24033/bsmf.1498
[13] D. Reem, The open mapping theorem and the fundamental theorem of algebra, Fixed Point Theory 9(1) (2008), 259–266.
[14] W. Rudin, Functional Analysis, 2nd Ed., McGraw-Hill, 1991.
[15] E. M. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, 2003.
[16] A. A. Zaitov, The functor of order-preserving functionals of finite degree, J. Math. Sci. 133(5) (2006), 1602–1603. [Translated from Zapiski Nauchnykh Seminarov POMI St. Petersburg, 313 (2004), 135–138.] https://doi.org/10.1007/s10958-006-0071-4
[17] A. A. Zaitov, Open mapping theorem for spaces of weakly additive homogeneous functionals, Math. Notes 88(5–6) (2010), 655–660. [Translated from Mathematicheskie Zametki 88 (2010), 683–688.] https://doi.org/10.1134/S0001434610110052