Half Lightlike Submanifolds of A Golden Semi-Riemannian Manifold
Download PDF
Authors: N. (ÖNEN) POYRAZ, E. YASAR AND D. DöNMEZ
DOI: 10.46793/KgJMat2401.099P
Abstract:
We present half lightlike submanifolds of a golden semi-Riemannian manifold. We prove that there is no radical anti-invariant half lightlike submanifold of a golden semi-Riemannian manifold. We get results for screen semi-invariant half lightlike submanifolds of a golden semi-Riemannian manifold. We prove the conditions for integrability of distributions on screen semi-invariant half lightlike submanifolds and investigate the geometry of leaves of distributions. Moreover, we study screen conformal half lightlike submanifolds of a golden semi-Riemannian manifold.
Keywords:
Golden semi-Riemannian manifolds, golden structure, half lightlike submanifolds, screen semi-invariant half lightlike submanifolds.
References:
[1] B. E. Acet, Lightlike hypersurfaces of metallic semi-Riemannian manifolds, Int. J. Geom. Methods Mod. Phys. 15(12) (2018), 185–201. https://doi.org/10.1142/S0219887818502018
[2] M. Atçeken and E. Kılıç, Semi-invariant lightlike submanifolds of a semi-Riemannian product manifold, Kodai Math. J. 30(3) (2007), 361–378.
[3] O. Bahadır, Screen semi-invariant half-lightlike submanifolds of a semi-Riemannian product manifold, Glob. J. Adv. Res. Class. Mod. Geom. 4(2) (2015), 116–124.
[4] M. Crasmareanu and C. E. Hreţcanu, Golden differential geometry, Chaos Solitons Fractals 38(5) (2008), 1229–1238. https://doi.org/10.1016/j.chaos.2008.04.007
[5] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Pub., Netherlands, 1996.
[6] K. L. Duggal and D. H. Jin, Half lightlike submanifolds of codimension 2, Toyama Math. J. 22 (1999), 121–161.
[7] K. L. Duggal and D. H. Jin, Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
[8] K. L. Duggal and B. Şahin, Screen conformal half-lightlike submanifolds, Int. J. Math. Math. Sci. 2004(68) (2004), 3737–3753.
[9] K. L. Duggal and B. Şahin, Differential Geometry of Lightlike Submanifolds, Birkhäuser Verlag AG., 2010.
[10] F. E. Erdoğan, Transversal lightlike submanifolds of metallic semi-Riemannian manifolds, Turkish J. Math. 42(6) (2018), 3133–3148. https://doi.org/10.3906/mat-1804-88
[11] F. E. Erdoğan and C. Yıldırım, On a study of the totally umbilical semi-invariant submanifolds of golden Riemannian manifolds, Politeknik Dergisi 21(4) (2018), 967–970. https://doi.org/10.2339/politeknik.389629
[12] S. I. Goldberg and K. Yano, Polynomial structures on manifolds, Kodai Math. J. 22 (1970), 199–218.
[13] M. Gök, S. Keleş and E. Kılıç, Some characterizations of semi-invariant submanifolds of golden Riemannian manifolds, Mathematics 7(12) (2019), 12 pages. https://doi.org/10.3390/math7121209
[14] C. E. Hreţcanu, Submanifolds in Riemannian manifold with golden structure, Workshop on Finsler Geometry and its Applications, Hungary, 2007.
[15] C. E. Hreţcanu and M. Crasmareanu, Applications of the golden ratio on Riemannian manifolds, Turkish J. Math. 33(2) (2009), 179–191. https://doi.org/10.3906/mat-0711-29
[16] D. H. Jin, Geometry of screen conformal real half lightlike submanifolds, Bull. Korean Math. Soc. 47(4) (2010), 701–714. https://doi.org/10.4134/BKMS.2010.47.4.701
[17] D. H. Jin, Real half-lightlike submanifolds of an indefinite Kaehler manifold, Commun. Korean Math. Soc. 26(4) (2011), 635–647. http://dx.doi.org/10.4134/CKMS.2011.26.4.635
[18] D. N. Kupeli, Singular Semi-Riemannian Geometry, Kluwer Academic Publishers Group, Dordrecht, 1996.
[19] M. Özkan, Prolongations of golden structures to tangent bundles, Differ. Geom. Dyn. Syst. 16 (2014), 227–238.
[20] N. (Önen) Poyraz and E. Yaşar, Lightlike hypersurfaces of a golden semi-Riemannian manifold, Mediterr. J. Math. 14(204) (2017), 20 pages. https://doi.org/10.1007/s00009-017-0999-2
[21] B. Şahin and M. A. Akyol, Golden maps betwen golden Riemannian manifolds and constancy of certain maps, Math. Commun. 19(2) (2014), 333–342.
[22] K. Yano, On a structure defined by a tensor field f of type (1, 1) satisfying f3 + f = 0, Tensor (N.S.) 14 (1963), 99–109.
[23] K. Yano and M. Kon, Structure on Manifolds, World Scientific Publishing Co. Ltd, 1984.