Positive Solutions for a Fractional Boundary Value Problem with Lidstone Like Boundary Conditions
Download PDF
Authors: J. T. NEUGEBAUER AND A. G. WINGO
DOI: 10.46793/KgJMat2402.309N
Abstract:
We consider a higher order fractional boundary value problem with Lidstone like boundary conditions, where the nonlinearity is an L1-Carathèodory function. We first consider the lower order problem. Then, by using a convolution to construct the Green’s function for the higher order problem, we are able to apply a recent fixed point theorem to show the existence of positive solutions of the boundary value problem.
Keywords:
Fractional boundary value problem, Fixed point
References:
[1] R. P. Agarwal, D. O’Regan and S. Staněk, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, J. Math. Anal. Appl. 371 (2010), 57–68. http://dx.doi.org/10.1016/j.jmaa.2010.04.034
[2] Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), 495–505. http://dx.doi.org/10.1016/j.jmaa.2005.02.052
[3] A. Benmezai, S. Chentout and J. Henderson, Strongly positive-like operators and eigenvalue criteria for existence and nonexistence of positive solutions for a-order fractional boundary value problems, J. Nonlinear Funct. Anal. (2019), Article ID 24, 1–14. https://doi.org/10.23952/jnfa.2019.24
[4] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, 2010.
[5] P. Eloe, J. W. Lyons and J. T. Neugebauer, An ordering on Green’s functions for a family of two-point boundary value problems for fractional differential equations, Commun. Appl. Anal. 19 (2015), 453–462.
[6] P. W. Eloe and J. T. Neugebauer, Convolutions and Green’s functions for two families of boundary value problems for fractional differential equations, Electron. J. Differential Equations 2016 (2016), 1–13.
[7] J. R. Graef, L. Kong, M. Wang and B. Yang, Uniqueness and parameter dependence of positive solutions of a discrete fourth-order problem, J. Difference Equ. Appl. 19 (2013), 1133–1146. http://dx.doi.org/10.1080/10236198.2012.719502
[8] J. R. Graef and B. Yang, Positive solutions to a three point fourth order focal boundary value problem, Rocky Mountain J. Math. 44 (2014), 937–951. http://dx.doi.org/10.1216/RMJ-2014-44-3-937
[9] J. Henderson and R. Luca, Existence of positive solutions for a singular fraction boundary value problem, Nonlinear Anal. Model. Control 22 (2017), 99–114.
[10] J. Ji and B. Yang, Computing the positive solutions of the discrete third-order three-point right focal boundary-value problems, Int. J. Comput. Math. 91 (2014), 996–1004. http://dx.doi.org/10.1080/00207160.2013.816690
[11] D. Jiang and C. Yuan, The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application, Nonlinear Anal. 72 (2010), 710–719. http://dx.doi.org/10.1016/j.na.2009.07.012
[12] E. R. Kaufmann and E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ. (2008), Article ID 3, 11 pages.
[13] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006.
[14] J. W. Lyons and J. T. Neugebauer, Positive solutions of a singular fractional boundary value problem with a fractional boundary condition, Opuscula Math. 37 (2017), 421–434.
[15] J. W. Lyons and J. T. Neugebauer, Two point fractional boundary value problems with a fractional boundary condition, Fract. Calc. Appl. Anal. 21 (2018), 442–461. https://doi.org/10.1515/fca-2018-0025
[16] H. Mâagli, N. Mhadhebi and N. Zeddini, Existence and estimates of positive solutions for some singular fractional boundary value problems, Abstr. Appl. Anal. (2014), Article ID 120781, 7 pages. http://dx.doi.org/10.1155/2014/120781
[17] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.
[18] J. T. Neugebauer, Existence of positive solutions of a singular fractional boundary value problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 25 (2018), 257–266. https://doi.org/10.1515/fca-2018-0025
[19] I. Podlubny, Fractional Differential Equations, Academic Press, Inc., San Diego, CA, 1999.
[20] M. U. Rehman, R. A. Khan and P. W. Eloe, Positive solutions of nonlocal boundary value problem for higher order fractional differential system, Dynam. Systems Appl. 20 (2011), 169–182.
[21] S. Staněk, The existence of positive solutions of singular fractional boundary value problems, Comput. Math. Appl. 62 (2011), 1379–1388. http://dx.doi.org/10.1016/j.camwa.2011.04.048
[22] X. Xu, D. Jiang and C. Yuan, Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear Anal. 71 (2009), 4676–4688. http://dx.doi.org/10.1016/j.na.2009.03.030
[23] B. Yang, Upper estimate for positive solutions of the (p,n−p) conjugate boundary value problem, J. Math. Anal. Appl. 390 (2012), 535–548. http://dx.doi.org/10.1016/j.jmaa.2012.01.054
[24] C. Yuan, D. Jiang and X. Xu, Singular positone and semipositone boundary value problems of nonlinear fractional differential equations, Math. Probl. Eng. (2009), Article ID 535209, 17 pages. http://dx.doi.org/10.1155/2009/535209
[25] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differential Equations (2006), Article ID 36, 12 pages.
[26] X. Zhang, C. Mao, Y. Wu and H. Su, Positive solutions of a singular nonlocal fractional order differential system via Schauder’s fixed point theorem, Abstr. Appl. Anal. (2014), Article ID 457965, 8 pages. http://dx.doi.org/10.1155/2014/457965