New Mixed Recurrence Relations of Two-Variable Orthogonal Polynomials via Differential Operators


Download PDF

Authors: M. M. MAKKY AND M. SHADAB

DOI: 10.46793/KgJMat2403.383M

Abstract:

In this paper, we derive new recurrence relations for two-variable orthogonal polynomials for example Jacobi polynomial, Bateman’s polynomial and Legendre polynomial via two different differential operators Ξ = ( ∂--  √  --∂-)
  ∂z +    w ∂w and Δ = (1--∂--  1 -∂-)
  w ∂z + z ∂w. We also derive some special cases of our main results.



Keywords:

Jacobi polynomials, Legendre polynomials, Bateman’s polynomials, differential operators.



References:

[1]   M. Abramowitz and I. A. Stegun, Handbook of Fathematical Functions, National Bureau of Standards, New York, 1970.

[2]   S. A. Agahanov, A method of constructing orthogonal polynomials of two variables for a certain class of weight functions (Russian), Vestnik Leningrad University 20 (1965), 5–10.

[3]   G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge, 1999. https://doi.org/10.1017/CBO9781107325937.

[4]   E. H. Doha, W. M. Abd-elhameed and H. M. Ahmed, The coefficients of differentiated expansions of double and triple Jacobi polynomials, Bull. Iran. Math. Soc. 38(3) (2012), 739–765.

[5]   C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Cambridge University Press, Cambridge, 2001. https://doi.org/10.1017/CBO9781107786134

[6]   M. A. Khan and G. S. Abukhammash, On a new class of polynomial set suggested by Legendre polynomials, Acta Ciencia Indica 4(857) (2003), XXIXM.

[7]   M. A. Khan, A. H. Khan and S. M. Abbas, A note on pseudo two variables Jacobi polynomials, Ain Shams Engineering Journal 3 (2013), 127–131. https://doi.org/10.1016/j.asej.2012.06.003

[8]   R. Khan, N. Kumar and R. Qamar, Two variables generalization of Jacobi polynomials, Global Journal of Pure and Applied Mathematics 13(5) (2017), 1387–1399.

[9]   T. H. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, in: R. A. Askey (Ed.), Theory and Application of Special Functions, Proceedings of an Advanced Seminar Sponsored by the Mathematics Research Center, The University of Wisconsin-Madison, Academic Press, New York, 1975, 435–495. https://doi.org/10.1016/B978-0-12-064850-4.50015-X

[10]   F. Marcellan, S. Jabee and M. Shadab, Analytic properties of Touchard based hybrid polynomials via operational techniques, Bull. Malaysian Math. Sci. Soc. 44 (2020), 223–242. https://doi.org/10.1007/s40840-020-00945-4

[11]   M. Marriaga, T. E. Perez and M. A. Pinar, Three term relations for a class of bivariate orthogonal polynomials, Mediterr. J. Math. 14(54) (2017), 25 pages. https://doi.org/10.1007/s00009-017-0859-0

[12]   G. V. Milovanović, G. Ozturk and R. Aktas, Properties of some of two-variable orthogonal polynomials, Bull. Malaysian Math. Sci. Soc. 43 (2019), 1403–1431. https://doi.org/10.1007/s40840-019-00750-8

[13]   E. D. Rainville, Special Functions, The Macmillan Co. Inc., New York, 1960, reprinted by Chelsea Publ. Co. Bronx, New York, 1971.

[14]   H. M. Srivastava and H. L. Manocha, A Treatise on Generating functions, Halsted Press (Ellis Horwood Ltd., Chichester, U.K.), John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1984. https://doi.org/10.1137/1028045.

[15]   G. Szego, Orthogonal Polynomials, 4th Edn., Colloquium Publications 23, Amer. Math. Soc., Providence, 1978.

[16]   M. I. Qureshi, M. Shadab and M. S. Baboo, Evaluation of some novel integrals involving Legendre function of second kind using hypergeometric approach, Palestine J. Math. 6(1) (2017), 68–75.