Geometric Inequalities for Statistical Submanifolds in Cosymplectic Statistical Manifolds
Download PDF
Authors: M. KAZAZ, M. ASLAM AND M. AQUIB
DOI: 10.46793/KgJMat2403.393K
Abstract:
In this paper, we obtain two important geometric inequalities namely, Euler’s inequality and Chen’s inequality for statistical submanifolds in cosymplectic statistical manifolds with constant curvature, and discuss the equality case of the inequalities. We also give some applications of the inequalities obtained.
Keywords:
Chen’s inequality, statistical manifolds, Cosymplectic statistical manifolds.
References:
[1] S. Amari, Differential Geometric Methods in Statistics, Springer-Verlag, Berlin, 1985.
[2] S. Amari and H. Nagaoka, Methods of Information Geometry, AMS & Oxford University Press, 2007.
[3] M. Aquib, Some inequalities for statistical submanifolds of quaternion Kaehler-like statistical space forms, Int. J. Geom. Methods Mod. Phys. 16(8) (2019), Article ID 1950129, 17 pages. https://doi.org/10.1142/S0219887819501299.
[4] M. Aquib and M. H. Shahid, Generalized normalized δ-Casorati curvature for statistical submanifolds in quaternion Kaehler-like statistical space forms, J. Geom. 109(13) (2018). https://doi.org/10.1007/s00022-018-0418-2
[5] M. E. Aydin, A. Mihai and I. Mihai, Some inequalities on submanifolds in statistical manifolds of constant curvature, Filomat 29(3) (2015), 465–477. https://doi.org/10.2298/FIL1503465A
[6] M. E. Aydin, A. Mihai and I. Mihai, Generalized wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature, Bull. Math. Sci. 7(155) (2017). https://doi.org/10.1007/s13373-016-0086-1
[7] M. Aquib, M. N. Boyom, A. H. Alkhaldi and M. H. Shahid, B. Y. Chen Inequalities for statistical submanifolds in Sasakian statistical manifolds, In: F. Nielsen, F. Barbaresco (Eds.), Geometric Science of Information, 2019, Springer, Cham, 398–406. https://doi.org/10.1007/978-3-030-26980-7\_41
[8] B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. 60 (1993), 568–578. https://doi.org/10.1007/BF01236084
[9] B. Y. Chen, A general inequality for submanifolds in complex space forms and its applications, Arch. Math. 67 (1996), 519–528.
[10] B. Y. Chen, Mean curvature and shape operator of isometric immersions in real space forms, Glasgow Math. J. 38(1) (1996), 87–97. https://doi.org/10.1017/S001708950003130X
[11] B. Y. Chen, A. Mihai and I. Mihai, A Chen first inequality for statistical submanifolds in Hessian manifolds of constant Hessian curvature, Results Math. 74(165) (2019). https://doi.org/10.1007/s00025-019-1091-y
[12] S. Decu, S. Haesen, L. Verstraelen and G. E. Vilcu, Curvature invariants of statistical submanifolds in Kenmotsu statistical manifolds of constant phi-sectional curvature, Entropy 20(7) (2018), Article ID 529, 15 pages. https://doi.org/10.3390/e20070529
[13] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato and M. H. Shahid, Sasakian statistical manifolds, Journal of Geometry and Physics 117 (2017), 179–186. https://doi.org/10.1016/j.geomphys.2017.03.010
[14] H. Furuhata, Hypersurfaces in statistical manifolds, Diff. Geom. Appl. 67 (2009), 420–429. https://doi.org/10.1016/j.difgeo.2008.10.019
[15] H. Furuhata and I. Hasegawa, Submanifold theory in holomorphic statistical manifolds, in: S. Dragomir, M. Shahid and F. Al-Solamy (Eds.), Geometry of Cauchy-Riemann Submanifolds, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-0916-7_7
[16] J. S. Kim, Y. M. Song and M. M. Tripathi, B. Y. Chen inequalities for submanifolds in generalized complex space forms, Bull. Korean Math. Soc. 40(3) (2003), 411–423. https://doi.org/10.4134/BKMS.2003.40.3.411
[17] T. Kurose, On the divergence of 1-conformally at statistical manifolds, Tohoku Math. J. 46(3) (1994), 427–433.
[18] S. L. Lauritzen, Statistical manifolds, in: S.-I. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Lauritzen and C. R. Rao, Differential Geometry in Statistical Inferences, Institute of Mathematical Statistic, Hayward California, 1987, 96–163.
[19] F. Maslek and H. Akbari, Casorati curvatures of submanifolds in cosymplectic statistical space forms, Bulletin of the Iranian Mathematical Society 46 (2020), 1389–1403. https://doi.org/10.1007/s41980-019-00331-2
[20] K. Matsumoto, I. Mihai and A. Oiaga, Ricci curvature of submanifolds in complex space form, Rev. Roumaine Math. Pures Appl. 46 (2001), 775–782.
[21] K. Matsumoto, I. Mihai and Y. Tazawa, Ricci tensor of slant submanifolds in complex space form, Kodai Math. J. 26 (2003), 85–94. https://doi.org/10.2996/kmj/1050496650
[22] A. Mihai and I. Mihai, Curvature invariants for statistical submanifolds of Hessian manifolds of constant Hessian curvature, Mathematics 44(6) (2018). https://doi.org/10.3390/math6030044
[23] M. Milijević, Totally real statistical submanifolds, Int. Inf. Sci. 21 (2015), 87–96. https://doi.org/10.4036/iis.2015.87
[24] C. Murathan and B. Sahin, A study of Wintgen like inequality for submanifolds in statistical warped product manifolds, J. Geom. 109(30) (2018). https://doi.org/10.1007/s00022-018-0436-0
[25] K. Takano, Statistical manifolds with almost contact structures and its statistical submersions, J. Geom. 85 (2006), 171–187. https://doi.org/10.1007/s00022-006-0052-2
[26] A. Vilcu and G. E. Vilcu, Statistical manifolds with almost quaternionic structures and quaternionic Kaehler-like statistical submersions, Entropy 17 (2015), 6213–6228. https://doi.org/10.3390/e17096213
[27] P. Vos, Fundamental equations for statistical submanifolds with applications to the Bartlett correction, Ann. Inst. Stat. Math. 41(3) (1989), 429–450. https://doi.org/10.1007/BF00050660
[28] J. Zhang, A note on curvature of α-connections of a statistical manifold, AISM 59 (2007), 161–170. https://doi.org/10.1007/s10463-006-0105-1