Iterative Algorithm of Split Monotone Variational Inclusion Problem for New Mappings
Download PDF
Authors: M. FARID, S. S. IRFAN AND I. AHMAD
DOI: 10.46793/KgJMat2404.493F
Abstract:
In this paper, we developed a new type iterative scheme to approximate a common solution of split monotone variational inclusion, variational inequality and fixed point problems for an infinite family of nonexpansive mappings in the framework of Hilbert spaces. Further, we proved that the sequence generated by the proposed iterative method converges strongly to a common solution of split monotone variational inclusion, variational inequality and fixed point problems. Furthermore, we give some consequences of the main result. Finally, we discuss a numerical example to demonstrate the applicability of the iterative algorithm. The result presented in this paper unifies and extends some known results in this area.
Keywords:
Iterative method, strong convergence, fixed point problem, split monotone variational inclusion problem, nonexpansive mapping, variational inequality problem.
References:
[1] M. Alansari, M. Farid and R. Ali, An iterative scheme for split monotone variational inclusion, variational inequality and fixed point problems, Adv. Differ. Equ. 2020(485) (2020). https://doi.org/10.1186/s13662-020-02942-0
[2] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, London, 2011.
[3] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl. 18 (2002), 441–453. https://doi.org/10.1088/0266-5611/18/2/310
[4] C. Byrne, Y. Censor, A. Gibali and S. Reich, Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Anal. 13(4) (2012), 759–775.
[5] Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol. 51 (2006), 2353–2365. https://doi.org/10.1088/0031-9155/51/10/001
[6] Y. J. Cho, X. Qin and S. M. Kang, Some results for equilibrium problems and fixed point problems in Hilbert spaces, J. Comput. Anal. Appl. 11(2) (2009), 287–294.
[7] P. L. Combettes, The convex feasibility problem in image recovery, Adv. Imaging Electron Physics 95 (1996), 155–453. https://doi.org/10.1016/S1076-5670(08)70157-5
[8] M. Farid and K. R. Kazmi, A new mapping for finding a common solution of split generalized equilibrium problem, variational inequality problem and fixed point problem, Korean J. Math. 27(2) (2019), 295–325. https://doi.org/10.11568/kjm.2019.27.2.297
[9] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics 28, Cambridge University Press, Cambridge, 1990.
[10] P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equation, Acta Math. 115 (1966), 271–310. https://doi.org/10.1007/BF02392210
[11] A. Kangtunyakarn and S. Suantai, A new mapping for finding common solutions of equilibrium problems and fixed point problems of finite family of nonexpansive mappings, Nonlinear Anal. 71(10) (2009), 4448–4460. https://doi.org/10.1016/j.na.2009.03.003
[12] K. R. Kazmi, S. H. Rizvi and R. Ali, A hybrid-extragradient iterative method for split monotone variational inclusion problem, mixed equilibrium problem and fixed point problem for a nonexpansive mapping, J. Nigerian Math. Soc. 35 (2016), 312–338.
[13] K. R. Kazmi, R. Ali and M. Furkan, Krasnoselski-Mann type iterative method for hierarchical fixed point problem and split mixed equilibrium problem, Numer. Algorithms 77(1) (2018), 289–308. https://doi.org/10.1007/s11075-017-0316-y
[14] K. R. Kazmi, R. Ali and M. Furkan, Hybrid iterative method for split monotone variational inclusion problem and hierarchical fixed point problem for a finite family of nonexpansive mappings, Numer. Algorithms 79(2) (2018), 499–527. https://doi.org/10.1007/s11075-017-0448-0
[15] K. R. Kazmi and S. H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optim. Lett. 8(3) (2014), 1113–1124. https://doi.org/10.1007/s11590-013-0629-2
[16] G. Marino and H. K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), 43–52. https://doi.org/10.1016/j.jmaa.2005.05.028
[17] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl. 150 (2011), 275–283. https://doi.org/10.1007/s10957-011-9814-6
[18] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73(4) (1967), 591–597. https://doi.org/10.1090/S0002-9904-1967-11761-0
[19] X. Qin, M. Shang and Y. Su, Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems, Math. Comput. Model. 48(7-8) (2008), 1033–1046. https://doi.org/10.1016/j.mcm.2007.12.008
[20] B. D. Rouhani, M. Farid and K. R. Kazmi, Common solution to generalized mixed quilibrium problem and fixed point problem for a nonexpansive semigroup in Hilbert space, J. Korean Math. Soc. 53(1) (2016) 89–114. https://doi.org/10.4134/JKMS.2016.53.1.08
[21] B. D. Rouhani, K. R. Kazmi and M. Farid, Common solutions to some systems of variational inequalities and fixed point problems, Fixed Point Theory 18(1) (2017), 167–190. https://doi.org/10.24193/FPT-RO.2017.1.14
[22] Y. Shehu and F. U. Ogbuisi, An iterative method for solving split monotone variational inclusion and fixed point problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 110(2) (2016), 503–518. https://doi.org/10.1007/s13398-015-0245-3
[23] K. Shimoji and W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiw. J. Math. 5(2) (2001), 387–404. https://doi.org/10.11650/twjm/1500407345
[24] T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for one parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305(1) (2005), 227–239. https://doi.org/10.1016/j.jmaa.2004.11.017
[25] H. K. Xu, Viscosity approximation method for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), 279–291. https://doi.org/10.1016/j.jmaa.2004.04.059