Existence Result for Fractional Differential Equation on Unbounded Domain
Download PDF
Authors: M. BEDDANI AND B. HEDIA
DOI: 10.46793/KgJMat2405.755B
Abstract:
In this article, we establish certain sufficient conditions to show the existence of solutions of boundary value problem for fractional differential equations on the half-line in a Fréchet space. The main result is based on Tykhonoff fixed point theorem combining with a suitable measure of non-compactness. An example is given to illustrate our approach.
Keywords:
Boundary value problem, measure of non-compactness of Kuratowski, Tykhonoff fixed point theorem, Riemann-Liouville fractional derivative.
References:
[1] A. Arara, M. Benchohra, N. Hamidi and J. J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Analysis: Theory, Methods & Applications 72 (2010), 580–586. https://doi.org/10.1016/j.na.2009.06.106
[2] J. Bana and K. Goebel, Measures of Noncompactness in Banach Spaces, Dekker, New York, 1980.
[3] J. Bana and M. Mursaleen, Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations, Springer, New Delhi, 2014.
[4] M. Beddani, Solution set for impulsive fractional differential inclusions, Kragujevac J. Math. 46(1) (2022), 49–64.
[5] M. Beddani and B. Hedia, Existence result for a fractional differential equation involvinga special derivative, Moroccan Journal of Pure and Applied Analysis 8(1) (2022), 67–77. https://doi.org/10.2478/mjpaa-2022-0006
[6] M. Benchohra, J. J. Nieto and N. Rezoug, Second order evolution equations with nonlocal conditions, Demonstr. Math. 50 (2017), 309–319. https://doi.org/10.1515/dema-2017-0029
[7] Y. Chatibi, E. El Kinani and A. Ouhadan, On the discrete symmetry analysis of some classical and fractional differential equations, Math. Methods Appl. Sci. 44(4) (2019), 2868–2878. https://doi.org/10.1002/mma.6064
[8] Y. Chatibi, E. El Kinani and A. Ouhadan, Lie symmetry analysis of conformable differential equations, AIMS Math. 4(4) (2019), 1133–1144.
[9] Y. Chatibi, E. El Kinani and A. Ouhadan, Lie symmetry analysis and conservation laws for the time fractional Black-Scholes equation, Int. J. Geom. Methods Mod. Phys. 17(1) (2020), Paper ID 2050010. https://doi.org/10.1142/S0219887820500103
[10] J. Dugundji and A. Granas, Fixed Point Theory, Springer-Verlag, New York, 2003.
[11] L. Gaul, P. Klein, and S. Kempfle, Damping description involving fractional operators, Mechanical Systems and Signal Processing 5 (1991), 81-88. https://doi.org/10.1016/0888-3270(91)90016-X
[12] W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophysical Journal 68 (1995), 46–53. https://doi.org/10.1016/S0006-3495(95)80157-8
[13] D. J. Guo, V. Lakshmikantham and X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, Dordrecht, 1996.
[14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[15] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanis, in: A. Carpinteri and F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, 1997, 291–348.
[16] I. Podlubny, Fractional Differential Equations, Academic Press, New York, NY, USA, 1999.
[17] M. A. Ragusa and V. B. Shakhmurov, A Navier-Stokes-type problem with high-order elliptic operator and applications, Mathematics 8(12) (2020), Article ID 2256. https://doi.org/10.3390/math8122256
[18] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
[19] X. Su, Solutions to boundary value problem of fractional order on unbounded domains in a Banach space, Nonlinear Anal. 74 (2011), 2844–2852. https://doi.org/10.1016/j.na.2011.01.006
[20] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.