New Tauberian Theorems for Cesáro Summable Triple Sequences of Fuzzy Numbers


Download PDF

Authors: C. GRANADOS, A. K. DAS AND S. DAS

DOI: 10.46793/KgJMat2405.787G

Abstract:

The purpose of this paper is to establish new results on Tauberian theorem for Cesàro summability of triple sequences of fuzzy numbers. Besides, we extend and unify several results in the available literature. Furthermore, a huge number of special cases, theorems and their implications are proved. We show some illustrative examples in support of the results obtained in this paper.



Keywords:

Triple Cesàro summability, slow oscillation, Tauberian condition, sequence of fuzzy numbers.



References:

[1]   Y. Altın, M. Mursaleen and H. Altınok, Statistical summability (C, 1) for sequences of fuzzy real numbers and a tauberian theorem, Journal of Intelligent & Fuzzy Systems 21 (2010), 379–384. https://doi.org/10.3233/IFS-2010-0458

[2]   F. Başar, Summability Theory and its Applications, Bentham Science Publishers, İstanbul, 2012. https://doi.org/10.2174/97816080545231120101

[3]   I. Çanak, Tauberian theorems for Cesàro summability of sequences of fuzzy numbers, Journal of Intelligent & Fuzzy Systems 27 (2014), 937–942. https://doi.org/10.3233/IFS-131053

[4]   H. Dutta, On some complete metric spaces of strongly summable sequences of fuzzy numbers, Rend. Semin. Mat. Univ. Politec. Torino 68 (2010), 29–36.

[5]   H. Dutta, A characterization of the class of statistically pre-Cauchy double sequences of fuzzy numbers, Appl. Math. Inf. Sci. 7 (2013), 1433–1436. https://doi.org/10.12785/amis/070423

[6]    H. Dutta and T. Bilgin, Strongly (vλ,a,δvmn,p)-summable sequence spaces defined by an Orlicz function, Appl. Math. Lett. 24 (2011), 1057–1062. https://doi.org/10.1016/j.aml.2011.01.022

[7]   H. Dutta and F. Başar, A generalization of Orlicz sequence spaces by Cesàro mean of order one, Acta Math. Univ. Comenian. (N.S.) 80 (2011), 185–200.

[8]   B. B. Jena, S. K. Paikray, P. Parida and H. Dutta, Results on Tauberian theorem for Cesàro summable double sequences of fuzzy numbers, Kragujevac J. Math. 44(4) (2020), 495–508. https://doi.org/10.46793/KgJMat2004.495J

[9]   B. B. Jena, S. K. Paikray and U. K. Misra, A Tauberian theorem for double Cesàro summability method, Int. J. Math. Math. Sci. 2016 (2016), 1–4. https://doi.org/10.1155/2016/2431010

[10]   B. B. Jena, S. K. Paikray and U. K. Misra, Inclusion theorems on general convergence and statistical convergence of (l, 1, 1)-summability using generalized Tauberian conditions, Tamsui Oxf. J. Inf. Math. Sci. 31 (2017), 101–115.

[11]   M. Matloka, Sequences of fuzzy numbers, Busefal 28 (1986), 28–37.

[12]   S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems 33 (1989), 123–126. https://doi.org/10.1016/0165-0114(89)90222-4

[13]   C. V. Stanojević, Analysis of divergence control and management of divergent process, in: I. Çanak (Ed.), Graduate Research Seminar Lecture Notes, University of Missouri-Rolla, Missouri, Fall, 1998.

[14]   P. V. Subrahmanyam, Cesàro summability of fuzzy real numbers, J. Anal. 7 (1999), 159–168.

[15]   Ö. Talo and C. Çanak, On the Cesàro convergence of sequences of fuzzy numbers, Appl. Math. Lett. 25 (2012), 676–681. https://doi.org/10.1016/j.aml.2011.09.002

[16]   Ö. Talo and F. Başar, On the slowly decreasing sequences of fuzzy numbers, Abstr. Appl. Anal. 2013 (2013), 1–7. https://doi.org/10.1155/2013/891986

[17]   Ö. Talo and F. Başar, Quasilinearity of the classical sets of sequences of fuzzy numbers and some related results, Taiwanese J. Math. 14(5) (2010), 1799–1819. https://doi.org/10.11650/twjm/1500406017

[18]   Ö. Talo and F. Başar, Certain spaces of sequences of fuzzy numbers defined by a modulus function, Demonstr. Math. 43(1) (2010), 139–149. https://doi.org/10.1515/dema-2010-0114

[19]   Ö. Talo and F. Başar, Determination of the duals of classical sets of sequences of fuzzy numbers and related matrix transformations, Comput. Math. Appl. 58 (2009), 717–733. https://doi.org/10.1016/j.camwa.2009.05.002

[20]   Ö. Talo, F. Başar, On the space bvp of sequences of p-bounded variation of fuzzy numbers, Acta Math. Sin. (Engl. Ser.) 24(7) (2008), 1205–1212. https://doi.org/10.1007/s10114-007-6552-7

[21]   B. C. Tripathy and S. Debnath, On generalized difference sequence spaces of fuzzy numbers, Acta Scientiarum. Technology 35 (2013), 117–121. https://doi.org/10.4025/actascitechnol.v35i1.15566

[22]   B. C. Tripathy, A. Baruah, M. Et and M. Gungor, On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers, Iran. J. Sci. Technol. Trans. A Sci. 36 (2012), 147–155.

[23]   L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X