Generalizations of some Bernstein-type Inequalities for the Polar Derivative of a Polynomial


Download PDF

Authors: A. MIR AND A. HUSSAIN

DOI: 10.46793/KgJMat2501.031M

Abstract:

In this paper, we establish some new Bernstein-type bounds for the polar derivative of constrained polynomials on the unit circle in the plane. The obtained results sharpen some known estimates for the ordinary derivative of polynomials as special cases.



Keywords:

Polar derivative, Bernstein inequality, zeros.



References:

[1]   A. Aziz, A refinement of an inequality of S. Bernstein, J. Math. Anal. Appl. 144 (1989), 226–235. https://doi.org/10.1016/0022-247X(89)90370-3

[2]   S. Bernstein, Sur l’ordre de la meilleure approximation des functions continues par des polynomes de degré donné, Mem. Acad. R. Belg. 4 (1912), 1–103.

[3]   C. Frappier, Q. I. Rahman and St. Ruscheweyh, New inequalities for polynomials, Trans. Amer. Math. Soc. 288 (1985), 69–99. https://doi.org/10.1090/S0002-9947-1985-0773048-1

[4]   N. K. Govil and Q. I. Rahman, Functions of exponential type not vanishing in a half-plane and related polynomials, Trans. Amer. Math. Soc. 137 (1969), 501–517. https://doi.org/10.1090/S0002-9947-1969-0236385-6

[5]    A. Hussain, A. Mir and A. Ahmad, On Bernstein-type inequalities for polynomials involving the polar derivative, J. Class. Anal. 16 (2020), 9–15. https://doi.org/10.7153/jca-2020-16-02

[6]   P. D. Lax, Proof of a conjecture of P. Erdős on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509–513. https://doi.org/10.1090/S0002-9904-1944-08177-9

[7]   M. Marden, The TeXbook, Mathematical Surveys, American Mathematical Society, Providence, USA, 1966.

[8]   G. V. Milovanović and A. Mir, Generalizations of Zygmund-type integral inequalities for the polar derivative of a complex polynomial, J. Inequal. Appl. 2020 (2020), 1–12. https://doi.org/10.1186/s13660-020-02404-x

[9]   G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, The TeXbook, World Scientific Publishing Co. Singapore, 1994.

[10]   A. Mir, On an operator preserving inequalities between polynomials, Ukrainian Math. J. 69 (2018), 1234–1247. https://doi.org/10.1007/s11253-017-1427-2

[11]   A. Mir, Some sharp upper bound estimates for the maximal modulus of polar derivative of a polynomial, Annali Dell ‘Universitá Di Ferrara 65 (2019), 327–336. https://doi.org/10.1007/s11565-019-00317-2

[12]   A. Mir, New integral norm estimates of Bernstein-type inequalities for a certain class of polynomials, Indian J. Pure Appl. Math. 51 (2020), 1357–1371. https://doi.org/10.1007/s13226-020-0470-0

[13]   A. Mir and B. Dar, On the polar derivative of a polynomial, J. Ramanujan Math. Soc. 29 (2014), 403–412.

[14]   A. Mir and I. Hussain, On the Erdős-Lax inequality concerning polynomials, C. R. Math. Acad. Sci. Paris 355 (2017), 1055–1062. https://doi.org/10.1016/j.crma.2017.09.017

[15]   A. Mir and A. H. Malik, Inequalities concerning the rate of growth of polynomials involving the polar derivative, Ann. Univ. Mariae Curie-Sk Lodowska Sect. A 74 (2020), 67–75. http://dx.doi.org/10.17951/a.2020.74.1.67-75

[16]   A. Mir and A. Wani, A note on two recent results about polynomials with restricted zeros, J. Math. Inequal. 14 (2020), 45–50. https://doi.org/10.7153/jmi-2020-14-04

[17]   Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York, 2002.

[18]   P. Turán, Über die Ableitung von polynomen, Compos. Math. 7 (1939), 89–95. http://eudml.org/doc/88754

[19]   S. L. Wali and W. M. Shah, Bernstien type inequalities for polynomials with restricted zeros, J. Anal. 29 (2021), 1083–1091. https://doi.org/10.1007/s41478-020-00296-0

[20]   A. Zireh and M. Bidkham, Inequalities for the polar derivative of a polynomial with restricted zeros, Kragjevac J. Math. 40 (2016), 113–124. https://doi.org/10.5937/KgJMath1601113Z