Logarithmically complete monotonicity of reciprocal ARCTAN function


Download PDF

Authors: V. JOVANOVIć AND M. TREML

DOI: 10.46793/KgJMat2501.105J

Abstract:

We prove the conjecture stated in F. Qi and R. Agarwal, On complete monotonicity for several classes of functions related to ratios of gamma functions, J. Inequal. Appl. (2019), that the function 1 arctan is logarithmically completely monotonic on (0,), but not a Stieltjes transform.



Keywords:

Complete monotonicity, Stieltjes transform.



References:

[1]   H. Alzer and C. Berg, Some classes of completely monotonic functions, Annales Academiae Scientiarum Fennicae. Mathematica 27 (2002), 445–460.

[2]   C. Berg, Integral representation of some functions related to the gamma function, Mediterr. J. Math. 1 (2004), 433–439. https://doi.org/10.1007/s00009-004-0022-6

[3]   C. Berg, S. Koumandos and H. L. Pedersen, Nielsen’s beta function and some infinitely divisible distributions, Math. Nachr. 294 (2021), 426–429. https://doi.org/10.1002/mana.201900217

[4]   C. Berg and H. L. Pedersen, A completely monotone function related to the gamma function, J. Comput. Appl. Math. 133 (2001), 219–230. https://doi.org/10.1016/S0377-0427(00)00644-0

[5]   R. Horn, On infinitely divisible matrices, kernels and functions, Zeitschrift für Warscheinlichkeitstheorie und Verwandte Gebiete 8 (1967), 219–230. https://doi.org/10.1007/BF00531524

[6]   F. Qi and R. Agarwal, On complete monotonicity for several classes of functions related to ratios of gamma functions, J. Inequal. Appl. (2019), 1–42. https://doi.org/10.1186/s13660-019-1976-z

[7]   F. Qi and C.-P. Chen, A complete monotonicity property of the gamma function, J. Math. Anal. Appl. 296 (2004), 603–607. https://doi.org/10.1016/j.jmaa.2004.04.026

[8]    R. L. Schilling, R. Song and Z. Vondraček, Bernstein Functions, De Gruyter, 2012. https://doi.org/10.1515/9783110269338

[9]   D. V. Widder, The Laplace Transform, Princeton University Press, 1946.