Constructing Symmetric Equality Algebras


Download PDF

Authors: R. ALI BORZOOEI, M. A. KOLOGANI, M. ALI HASHEMI AND E. MOHAMMADZADEH

DOI: 10.46793/KgJMat2502.203B

Abstract:

In this paper, we introduce the notion of strong fuzzy filter on hyper equality algebras and investigate some equivalence definitions of it. Then by using this notion we constructed a symmetric equality algebra and define a special form of classes. By using these, we define the concept of a fuzzy hyper congruence relation on hyper equality algebra and we prove that the quotient is made by it is an equality algebra. Also, by using a fuzzy equivalence relation on hyper equality, we introduce a fuzzy hyper congruence relation and prove that this fuzzy hyper congruence is regular and finally we prove that the quotient structure that is made by it is a symmetric hyper equality algebra.



Keywords:

(Hyper) Equality algebra, symmetric equality algebra, strong fuzzy filter, congruence relation.



References:

[1]   R. A. Borzooei, P. Corsini and M. M. Zahedi, Some kinds of positive implicative hyper K-ideals, J. Discrete Math. Sci. Cryptogr. 6(1) (2003), 97–108. https://doi.org/10.1080/09720529.2003.10697966

[2]   R. A. Borzooei, B. G. Saffar and R. Ameri, On hyper EQ-algebras, Italian Journal of Pure and Applied Mathematics 31 (2013), 77–96.

[3]   R. A. Borzooei and S. Niazian, Weak hyper residuated lattice, Quasigroups Related Systems 21 (2013), 29–42.

[4]   R. A. Borzooei, M. M. Zahedi, Y. B. Jun and A. Hasankhani, On Hyper K-algebra, Math. Jpn. 52(1) (2000), 113–121.

[5]   R. A. Borzooei, F. Zebardast and M. Aaly Kologani, Some types of filters in equality algebras, Categ. Gen. Algebr. Struct. Appl. 7 (2017), 33–55.

[6]   X. Y. Cheng, X. L. Xin and Y. B. Jun, Hyper equality algebras, Quantitative Logic and Soft Computing 2016, Adv. Intell. Syst. Comput. 510 (2016), 415–428.

[7]   L. C. Ciungu, On pseudo-equality algebras, Arch. Math. Log. 53 (2014), 561–570. https://doi.org/10.1007/s00153-014-0380-0

[8]   L. C. Ciungu, Internal states on equality algebras, Soft Comput. 19 (2015), 939–953. https://doi.org/10.1007/s00500-014-1494-3

[9]   S. Jenei, Equality algebras, Stud. Log. 56(2) (2010), 183–186. https://doi.org/10.1109/CINTI.2010.5672249

[10]   S. Jenei, Equality algebras, Proceedings of the CINTI2010 Conference (11th IEEE International Symposium on Computational Intelligence and Informatics), Budapest, 2010.

[11]   Y. B. Jun and W. H. Shim, Fuzzy strong implicative hyper BCK-ideals of hyper BCK-algebras, Inf. Sci. 170 (2005), 351–361. https://doi.org/10.1016/j.ins.2004.03.009

[12]   M. A. Hashemi and R. A. Borzooei, Results on hyper equality algebras, Journal of Mathematical Extension 14(3) (2020), 169–193.

[13]   Z. M. Ma and B. Q. Hu, Fuzzy EQ-filters of EQ-algebras, Quantitative Logic and Soft Computing 5 (2012), 528–535. https://doi.org/10.1142/9789814401531_0071

[14]   F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm, 1934, 45–49.

[15]   J. Mittas and M. Konstantinidou, Sur une nouvelle generation de la notion detreillis, Les supertreillis et certaines de certaines de leurs proprites generales, Ann. Sci. Univ. Blaise Pascal, Ser. Math. Fasc. 25 (1989), 61–83.

[16]   M. Mohseni Takallo and M. Aaly Kologani, MBJ-neutrosophic filters of equality algebras, JAHLA 1(2) (2020), 57–75. https://doi.org/10.29252/hatef.jahla.1.2.6

[17]   V. Novák, On fuzzy type theory, Fuzzy Sets and Systems 149 (2005), 235–273. https://doi.org/10.1016/j.fss.2004.03.027

[18]   V. Novák and B. De Baets, EQ-algebras, Fuzzy Sets and Systems 160 (2009), 2956–2978. https://doi.org/10.1016/j.fss.2009.04.010

[19]   A. Paad and M. Bakhshi, Hyper equality ideals: Basic properties, JAHLA 1(2) (2020), 45–56. https://doi.org/10.29252/HATEF.JAHLA.1.2.5

[20]    X. Y. Yu, X. L. Xin and J. T. Wang, Fuzzy filters on equality algebras with applications, Journal of Intelligent & Fuzzy Systems 35 (2018), 3709–3719. https://doi.org/10.3233/JIFS-18509

[21]   L. A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1142/9789814261302_0021

[22]   M. Zarean, R. A. Borzooei and O. Zahiri, On state equality algebras, Quasigroups Related Systems 25 (2017), 307–326.

[23]   F. Zebardast, R. A. Borzooei and M. Aaly Kologani, Results on equality algebras, Inf. Sci. 381 (2017), 270–282. https://doi.org/10.1016/j.ins.2016.11.027