Local Existence and Blow up for a Nonlinear Viscoelastic Kirchhoff-type Equation with Logarithmic Nonlinearity
Download PDF
Authors: E. PIşKIN, S. BOULAARAS AND N. IRKıL
DOI: 10.46793/KgJMat2503.335P
Abstract:
The aim of this paper is to consider the initial boundary value problem of nonlinear viscoelastic Kirchhoff-type equation with logarithmic source term. Firstly, we prove the local existence of weak solution by applying Banach fixed theorem. Later, we derive the blow-up results by the combination of the perturbation energy method, concavity method and differential-integral inequality technique.
Keywords:
Existence, blow up, viscoelastic equation, Kirchhoff-type equation, logarithmic nonlinearity.
References:
[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Academic Press, Elsevier, USA, 2003.
[2] M. M. Al-Gharabli, A. Guesmia and S. A. Messaoudi, Well posedness and asymptotic stability results for a viscoelastic plate equation with a logarithmic nonlinearity, Appl. Anal. 99(1) (2020), 50–74. https://doi.org/10.1080/00036811.2018.1484910
[3] I. Bialynicki-Birula and J. Mycielski, Wave equations with logarithmic nonlinearities, Bulletin L’Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques 23(4) (1975), 461–466.
[4] S. Boulaaras, A. Draifia and M. Alnegga, Polynomial decay rate for Kirchhoff type in viscoelasticity with logarithmic nonlinearity and not necassarily decreasing kernel, Symmetry 11(2) (2019), 24 pages. https://doi.org/10.3390/sym11020226
[5] H. Buljan, A. Šiber, M. Soljačić, T. Schwartz, M. Segev and D. N. Christodoulides, Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev. E. 68(3) (2003), Article ID 036607. https://doi.org/10.1103/PhysRevE.68.036607
[6] T. Cazenave and A. Haraux, Equations d’evolution avec non linéarité logarithmique, Ann. Fac. Sci. Toulouse 2(1) (1980), 21–51.
[7] H. Chen and S. Y. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differ. Equ. 258(12) (2015), 4424–4442. https://doi.org/10.1016/j.jde.2015.01.038
[8] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97(4) (1975), 1061–1083. https://doi.org/10.2307/2373688
[9] N. Irkıl and E. Pişkin, Mathematical behavior of solutions of the Kirchhoff type equation with logarithmic nonlinearity, Bol. Soc. Parana. Mat. 40 (2022), 1–13. https://doi.org/10.5269/bspm.51971
[10] De Martino, M. Falanga, C. Godano and G. Lauro, Logarithmic Schrödinger-like equation as a model for magma transport, Europhysics Letters 63(3) (2003), 472–475. https://doi.org/10.1209/epl/i2003-00547-6
[11] S. A. Messaoudi, M. M. Al-Gharabli and A. Guesmia, Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity, Commun. Pure Appl. Anal. 18(1) (2019), 159–180. 10.3934/cpaa.2019009
[12] L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equtions, Israel J. Math. 22(1975), 273–303. https://doi.org/10.1007/BF02761595
[13] A. Peyravi, General stability and exponential growth for a class of semi-linear wave equations with logarithmic source and memory terms, Appl. Math. Optim. 81 (2020), 545–561. https://doi.org/10.1007/s00245-018-9508-7
[14] E. Pişkin, Sobolev Spaces, Seçkin Publishing, Turkey, 2017.
[15] E. Pişkin and N. Irkıl, Well-posedness results for a sixth-order logarithmic Boussinesq equation, Filomat 33(13) (2019), 3985–4000. https://doi.org/10.2298/FIL1913985P
[16] E. Pişkin and N. Irkıl, Global existence and decay of solutions for a higher-order Kirchhoff-type systems with logarithmic nonlinearities, Quaest. Math. (2021) (to appear). https://doi.org/10.2989/16073606.2021.1884915
[17] E. Pişkin and N. Irkıl, Existence and decay of solutions for a higher-order viscoelastic wave equation with logarithmic nonlinearity, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 70(1) (2021), 300–319. https://doi.org/10.31801/cfsuasmas.718432
[18] E. Pişkin and N. Irkıl, Exponential growth of solutions of higher-order viscoelastic wave equation with logarithmic term, Erzincan University Journal of Science and Technology 13(1) (2020), 106–111. https://doi.org/10.18185/erzifbed.637784
[19] Y. Yang, J. Li and T. Yu, Qualitative analysis of solutions for a class of Kirchhoff equation with linear strong damping term, nonlinear weak damping term and power-type logarithmic source term, Appl. Numer. Math. 141 (2019), 263–285. https://doi.org/10.1016/j.apnum.2019.01.002
[20] Y. Ye, Logarithmic viscoelastic wave equation in three dimensional space, Appl. Anal. 100(10) (2021), 2210–2226. https://doi.org/10.1080/00036811.2019.1679790