Numerical Method for Solution of Fourth-order Volterra Integro-differential Equations by GreenŠs Function


Download PDF

Authors: F. A. AKGUN AND Z. RASULOV

DOI: 10.46793/KgJMat2503.485A

Abstract:

In this paper, we generalize Picard-Green’s Embedded method for solving fourth-order Volterra integro-differential equations. We prove the existence and uniqueness theorems. Moreover, we illustrate some numerical examples to present the better approximation with a minimum error. We use MATLAB for numerical solutions.



Keywords:

Fixed point iteration, Picard-Green’s method, convergence rate, numerical approximation.



References:

[1]   A. M. Abed, M. F. Younis and A. A. Hamoud, Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM, Nonlinear Functional Analysis and Applications 27(1) (2022), 189–201. https://doi.org/10.22771/nfaa.2022.27.01.12

[2]   F. Ali, J. Ali and I. Uddin, A novel approach for the solution of BVPs via Green’s function and fixed point iterative method, J. Appl. Math. Comput. 66(1) (2021), 167–181. https://doi.org/10.1007/s12190-020-01431-7

[3]   P. R. Agarwal, Boundary value problems for higher order integro-differential equations, Nonlinear Anal. 7(3) (1983), 259–270. https://doi.org/10.1016/0362-546X(83)90070-6

[4]   G. Akram and H. Rehman, Homotopy perturbation method with reproducing Kernel method for third order nonlinear boundary value problems, Journal of Basic and Applied Scientific Research 4(1) (2014), 60–67.

[5]   Q. M. Al-Mdallal, Monotone iterative sequences for nonlinear integro-differential equations of second order, Nonlinear Anal. Real World Appl. 12(6) (2011), 3665–3673. https://doi.org/10.1016/j.nonrwa.2011.06.023

[6]   A. Avudainayagam and C. Vani, Wavelet–Galerkin method for integro-differential equations, Appl. Numer. Math. 32(3) (2000), 247–254. https://doi.org/10.1016/S0168-9274(99)00026-4

[7]   F. A. Akgun and Z. Rasulov, Generalized iteration method for the solution of fourth order BVP via Green’s function, Eur. J. Pure Appl. Math. 14(3) (2021), 969–979. https://doi.org/10.29020/nybg.ejpam.v14i3.4020

[8]   S. El-Sayed and M. Abdel-Aziz, A comparison of Adomian’s decomposition method and Wavelet–Galerkin method for integro-differential equations, Appl. Math. Comput. 136(1) (2003), 151–159. https://doi.org/10.1016/S0096-3003(02)00024-3

[9]   A. A. Hamoud and K. P. Ghadle, Existence and uniqueness of the solution for Volterra–Fredholm integro-differential equations, Zh. Sib. Fed. Univ. Mat. Fiz. 11(6) (2018), 692–701. https://doi.org/10.17516/1997-1397-2018-11-6-692-701

[10]   A. A. Hamoud, K. P. Ghadle and G. M. Sh B. Issa, Existence and uniqueness theorems for fractional Volterra-Fredholm integro-differential equations, International Journal of Applied Mathematics 31(3) (2018), 333–348. https//doi.org/10.12732/ijam.v31i3.3

[11]   S. M. Hosseini and S. Shahmorad, Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases, Appl. Math. Model. 27(2) (2003), 145–154. https://doi.org/10.1016/S0307-904X(02)00099-9

[12]   Y. Jiang and J. Ma, Spectral collocation methods for Volterra-integro differential equations with noncompact kernels, J. Comput. Appl. Math. 244 (2013), 115–124. https://doi.org/10.1016/j.cam.2012.10.033

[13]   S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory and Applications 69 (2013). https://doi.org/10.1186/1687-1812-2013-69

[14]   K. Maleknejad and Y. Mahmoudi, Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations, Appl. Math. Comput. 145(2–3) (2003), 641—653. https://doi.org/10.1016/S0096-3003(03)00152-8

[15]   J. Morchalo, On two point boundary value problem for integro-differential equation of higher order, Fasc. Math. 9 (1975), 77–96.

[16]   M. Rashed, Lagrange interpolation to compute the numerical solutions of differential, integral and integro-differential equation, Appl. Math. Comput. 151(3) (2004), 869–878. https://doi.org/10.1016/S0096-3003(03)00543-5

[17]   T. Tahernezhad and R. Jalilian, Exponential spline for the numerical solutions of linear Fredholm integro-differential equations, Adv. Differential Equations 141 (2020), 1–15. https://doi.org/10.1186/s13662-020-02591-3

[18]   C. C. Tisdell, On Picard’s iteration method to solve differential equations and a pedagogical space for otherness, International Journal of Mathematical Education in Science and Technology 50(5) (2019), 788–799. https://doi.org/10.1080/0020739X.2018.1507051

[19]   V. Volterra, Theory of functionals and of integral and integro-differential equations, Bull. Amer. Math. Soc. 38(1) (1932), 623–633. https://doi.org/10.1090/S0002-9904-1932-05479-9

[20]   J. Zhao and R. M. Corless, Compact finite difference method for integro-differential equation, Appl. Math. Comput. 177(1) (2006), 271–288. https://doi.org/10.1016/j.amc.2005.11.007