Some Remarks on the Randić Energy of Graphs


Download PDF

Authors: Ş. B. BOZKURT ALTıNDAğ, I. MILOVANOVIć AND E. MILOVANOVIć

DOI: 10.46793/KgJMat2504.517A

Abstract:

Let G be a graph of order n. The Randić energy of G is defined as RE(G ) = i=1n|ρi|, where ρ1 ρ2 ⋅⋅⋅ρn are the Randić eigenvalues of G. In this study, we present improved bounds for RE(G) as well as a relationship between (ordinary) graph energy and RE(G).



Keywords:

Graph spectrum, Randić spectrum, graph energy, Randić energy.



References:

[1]   Ş. B. Bozkurt and D. Bozkurt, Sharp upper bounds for energy and Randić energy, MATCH Commun. Math. Comput. Chem. 70(2) (2013), 669–680.

[2]   Ş. B. Bozkurt, A. D. Gungor, I. Gutman and A. S. Cevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (1) (2010), 239–250.

[3]   M. Cavers, S. Fallat and S. Kirkland, On the normalized Laplacian energy and general Randić index R1 of graphs, Linear Algebra Appl. 433 (2010), 172–190. https://doi.org/10.1016/j.laa.2010.02.002

[4]   D. Cvetković, M. Doob and H. Sachs, Spectra of Graph-Theory and Application, Academic Press, New York, 1980.

[5]   K. C. Das, I. Gutman, I. Milovanović, E. Milovanović and B. Furtula, Degree–based energies of graphs, Linear Algebra Appl. 554 (2018), 185–204. https://doi.org/10.1016/j.laa.2018.05.027

[6]   K. C. Das and S. Sorgun, On Randić energy of graphs, MATCH Commun. Math. Comput. Chem. 72(1) (2014), 227–238.

[7]   K. C. Das, S. Sorgun and K. Xu, On Randić energy of graphs, in: I. Gutman and X. Li, (Eds.), Energies of Graphs - Theory and Applications University of Kragujevac, Kragujevac, 2016, 111–122.

[8]   K. C. Das and S. Sun, Extremal graphs for Randić energy, MATCH Commun. Math. Comput. Chem. 77(1) (2017), 77–84.

[9]   S. Fajtlowicz, On conjectures of graffiti-II, Congr. Numer. 60 (1987) 187–197.

[10]   B. Furtula and I. Gutman, Comparing energy and Randić energy, Maced. J. Chem. Chem. Eng. 32 (2013), 117–123.

[11]   E. Glogić, E. Zogić and N. Glišović, Remarks on the upper bound for the Randić energy of bipartite graphs, Discrete Appl. Math. 221 (2017), 67–70. https://doi.org/10.1016/j.dam.2016.12.005

[12]   I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungszentrum Graz 103 (1978), 1–22.

[13]   I. Gutman, Spectrum and energy of the Sombor matrix, Vojnotehnički pregled 69 (2021), 551–561.

[14]   I. Gutman, B. Furtula and Ş. B. Bozkurt, On Randić energy, Linear Algebra App. 442 (2014), 50–57. https://doi.org/10.1016/j.laa.2013.06.010

[15]   I. Gutman, I. Redžepović and J. Rada, Relating energy and Sombor energy, Contrib. Math. 4 (2021), 41–44. https://doi.org10.47443/cm.2021.0054

[16]   I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399–3405.

[17]   I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–538.

[18]   J. He, Y. Liu and J. Tian, Note on the Randić energy of graphs, Kragujevac J. Math. 42 (2018), 209–215.

[19]   J. Li, J. M. Guo and W. C. Shiu, A note on Randić energy, MATCH Commun. Math. Comput. Chem. 74(2) (2015), 389–398.

[20]   B. Liu, Y. Huang and J. Feng, A note on the Randić spectral radius, MATCH Commun. Math. Comput. Chem. 68(3) (2012), 913–916.

[21]   A. D. Maden, New bounds on the incidence energy, Randić energy and Randić Estrada index, MATCH Commun. Math. Comput. Chem. 74(2) (2015), 367–387.

[22]   E. I. Milovanović, M. R. Popović, R. M. Stanković and I. Ž. Milovanović, Remark on ordinary and Randić energy of graphs, J. Math. Inequal. 10 (2016), 687–692. https://dx.doi.org/10.7153/jmi-10-55

[23]   D. S. Mitrinović and P. M. Vasić, Analytic Inequalities, Springer Verlag, Berlin, Heidelberg, New York, 1970.

[24]   S. Nikolić, G. Kovačević, A. Milićević and N. Trinajstić, Modified Zagreb indices, Croat. Chem. Acta 76 (2003), 113–124.