Strongly Extending Modular Lattices
Download PDF
Authors: S. E. ATANI, M. KHORAMDEL, S. D. P. HESARI AND M. N. R. ALIPOUR
DOI: 10.46793/KgJMat2504.541A
Abstract:
In this paper, our purpose is to initiate the study of the concept of strongly extending modular lattices based on the similar notion of strongly extending modules. We will prove some basic properties of strongly extending modular lattices and employ this results to give applications to the category of modules with a fixed hereditary torsion class and Grothendieck categories.
Keywords:
Modular lattice, upper continuous lattice, linear lattice morphism, fully invariant element, strongly extending lattice.
References:
[1] T. Albu, The Osofsky-Smith theorem for modular lattices and applications. I, Comm. Algebra 39 (2011), 4488–4506. https://doi.org/10.1080/00927872.2011.616427
[2] T. Albu, The Osofsky-Smith theorem for modular lattices, and applications. II, Comm. Algebra 42 (2014), 2663–2683. https://doi.org/10.1080/00927872.2013.770520
[3] T. Albu, Topics in Lattice Theory with Applications to Rings, Modules, and Categories, in: Lecture Notes, XXIII Brazilian Algebra Meeting, Maringa, Parana, Akadémiai Kiadó, Brasil, 2014, page 80.
[4] T. Albu, Chain Conditions in Modular Lattices with Applications to Grothendieck Categories and Torsion Theories, Monograph Series of Parana’s Mathematical Society No. 1, Sociedade Paranaense de Matematica, Maringa, Parana, Brasil, 2015.
[5] T. Albu and M. Iosif, The category of linear modular lattices, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 56 (2013), 33–46.
[6] T. Albu and M. Iosif, Lattice preradicals with applications to Grothendieck categories and torsion theories, J. Algebra 444 (2015), 339–366.
[7] T. Albu and M. Iosif, Modular lattices and lattice preradicals, J. Algebra Appl. 16 (2017), Article ID 1750116, 19 pages. https://doi.org/10.1142/S021949881750116X
[8] T. Albu, M. Iosif and A. Tercan, The conditions in modular lattices, and applications, J. Algebra Appl. 15 (2016), 19 pages, Article ID 1650001. https://doi.org/10.1142/S0219498816500018
[9] T. Albu, Y. Kara and A. Tercan, Fully invariant-extending modular lattices, and applications I, J. Algebra 517 (2019), 207–222. https://doi.org/10.1016/j.jalgebra.2018.08.036
[10] T. Albu, Y. Kara and A. Tercan, Strongly fully invariant-extending modular lattices, Quaest. Math. (2020), 1–11. https://doi.org/10.2989/16073606.2020.1861488
[11] T. Albu and C. Năstăsescu, Relative Finiteness in Module Theory, Vol. 84, Marcel Dekker, Inc., New York, 1984.
[12] G. F. Birkenmeier, B. J. Müller and S. T. Rizvi, Modules in which every fully invariant submodule is essential in a direct summand, Comm. Algebra 30 (2002), 1395–1415. https://doi.org/10.1080/00927870209342387
[13] G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Modules with fully invariant submodules essential in fully invariant summands, Comm. Algebra 30 (2002), 1833–1852. https://doi.org/10.1080/00927870209342387
[14] G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Modules with FI-extending hulls, Glasg. Math. J. 51 (2009), 347–357. https://doi.org/10.1017/S0017089509005023
[15] G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Extensions of Rings and Modules, Birkhäuser, Springer, New York, 2013. https://doi.org/10.1007/978-0-387-92716-9
[16] G. Birkhoff, Lattice Theory, American Mathematical Society, Providence, RI, 1967.
[17] P. Crawley and R. P. Dilworth, Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
[18] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Pitman Research Notes in Mathematics Series 313, Longman Scientific Technical, Harlow, copublished in the United States with John Wiley Sons, Inc., New York, 1994. https://doi.org/10.1201/9780203756331
[19] S. Ebrahimi Atani, M. Khoramdel and S. Dolati Pish Hesari, On strongly extending modules, Kyungpook Math. J. 54 (2014), 237–247. https://doi.org/10.5666/KMJ.2014.54.2.237
[20] G. Grätzer, General Lattice Theory, Birkhäuser, Basel, 2003.
[21] B. Stenström, Rings of Quotients. An Introduction to Methods of Ring Theory, Lecture Notes in Mathematics 237, Springer-Verlag, Berlin, New York, 1975.