Generalization of Lupas-Kantorovich Operators Connected with Polya Distribution


Download PDF

Authors: V. GUPTA AND G. AGRAWAL

DOI: 10.46793/KgJMat2601.105G

Abstract:

The motive of this paper is to introduce the generalization of Lupaş-Kantorovich operators connected with Pólya distribution and establish the rate of convergence in terms of modulus of continuity. Furthermore, a Voronovskaja type asymptotic formula for these operators is studied. In the end, few numerical examples with graphical representation are added to depict the effect of convergence of the operators.



Keywords:

Pólya distribution, Lupaş operators, modulus of continuity, Voronovskaja type theorem



References:

[1]   T. Acar, O. Alagöz, A. Aral, D. Costarelli, M. Turgay and G. Vinti, Approximation by sampling Kantorovich series in weighted spaces of functions, Turk. J. Math. 46(7) (2022), 2663–2676. https://doi.org/10.55730/1300-0098.3293

[2]   T. Acar, A. Aral and S. A. Mohiuddine, On Kantorovich modification of (p,q)-Bernstein operators, Iran. J. Sci. Technol. Trans. A Sci. 42(3) (2018), 1459–1464. https://doi.org/10.1007/s40995-017-0154-8

[3]   T. Acar, D. Costarelli and G. Vinti, Linear prediction and simultaneous approximation by m-th order Kantorovich type sampling series, Banach J. Math. Anal. 14 (2020), 1481–1508. https://doi.org/10.1007/s43037-020-00071-0

[4]   T. Acar, S. Kursun and M. Turgay, Multidimensional Kantorovich modifications of exponential sampling series, Quaest. Math. 46(1) (2023), 57–72. https://doi.org/10.2989/16073606.2021.1992033

[5]   A. M. Acu, T. Acar, C. V. Muraru and V. A. Radu, Some approximation properties by a class of bivariate operators, Math. Meth. Appl. Sci. 42 (2019), 5551–5565. https://doi.org/10.1002/mma.5515

[6]    G. Agrawal and V. Gupta, Modified Lupaş-Kantorovich operators with Pólya distribution, Rocky Mountain J. Math. 52(6) (2022), 1909–1919. https://doi.org/10.1216/rmj.2022.52.1909

[7]   P. N. Agrawal and P. Gupta, q-Lupaş Kantorovich operators based on Pólya distribution, Ann. Univ. Ferrara 64 (2018), 1–23. https://doi.org/10.1007/s11565-017-0291-1

[8]   P. N. Agrawal, N. Ispir and A. Kajla, Approximation properites of Bézier-summation integral type operators based on Pólya-Bernstein functions, Appl. Math. Comput. 259 (2015), 533–539. https://doi.org/10.1016/j.amc.2015.03.014

[9]   P. N. Agrawal, N. Ispir and A. Kajla, GBS operators of Lupaş–Durrmeyer type based on Pólya distribution, Results Math. 69(3–4) (2016), 397–418. https://doi.org/10.1007/s00025-015-0507-6

[10]   G. A. Anastassiou and S. Gal, Approximation Theory: Moduli of Continuity and Global Smoothness Preservation, Birkhäuser, Boston, 2000.

[11]   A. Aral, T. Acar and S. Kursun, Generalized Kantorovich forms of exponential sampling series, Anal. Math. Phys. 12 (2022), Article ID 50. https://doi.org/10.1007/s13324-022-00667-9

[12]   D. Bǎrbosu and C. V. Muraru, Approximating B-continuous functions using GBS operators of Bernstein–Schurer–Stancu type based on q-integers, Appl. Math. Comput. 259 (2015), 80–87. https://doi.org/10.1016/j.amc.2015.02.030

[13]   S. Deshwal, N. Ispir and P. N. Agrawal, Blending type approximation by bivariate Bernstein Kantorovich operators, Appl. Math. Inf. Sci. 11(2) (2017), 423–432. http://dx.doi.org/10.18576/amis/110210

[14]    O. Doǧru and V. Gupta, Korovkin-type approximation propeties of bivariate q-Meyer–König and Zeller operators, Calcolo 43 (2006), 51–63. https://doi.org/10.1007/s10092-006-0114-8

[15]   A. D. Gadjiev and A. M. Ghorbanalizadeh, Approximation properties of a new type Bernstein–Stancu polynomials of one and two variables, Appl. Math. Comput. 216(3) (2010), 890–901. https://doi.org/10.1016/j.amc.2010.01.099

[16]   G. Gal and S. Trifa, Quantitative estimates for Lp-approximation by Bernstein-Kantorovich-Choquet polynomials with respect to distorted Lebesgue measures, Constr. Math. Anal. 2(1) (2019), 15–21. https://doi.org/10.33205/cma.481186

[17]   N. K. Govil, V. Gupta and D. Soybas, Certain new classes of Durrmeyer type operators, Appl. Math. Comput. 225 (2013), 195–203. https://doi.org/10.1016/j.amc.2013.09.030

[18]   M. Goyal, A. Kajla, P. N. Agrawal and S. Araci, Approximation by bivariate Bernstein-Durrmeyer operators on a triangle, Appl. Math. Inf. Sci. 11(3) (2017), 693–702. http://dx.doi.org/10.18576/amis/110308

[19]   V. Gupta and T. Rassias, Lupaş–Durrmeyer operators based on Pólya distribution, Banach J. Math. Anal. 8(2) (2014), 146–155. https://doi.org/10.15352/bjma/1396640060

[20]   M. Gurdek, L. Rempulska and M. Skorupka, The Baskakov operators for the functions of two variables, Collect. Math. 50(3) (1999), 298–302. http://eudml.org/doc/42704

[21]   I. Büyükyazici, On the approximation properties of two-dimensional q-Bernstein-Chlodowsky polynomials, Math. Commun. 14(2) (2009), 255–269.

[22]   H. G. İlarslan and T. Acar, Approximation by bivariate (p,q)-Baskakov–Kantorovich operators, Georgian Math. J. 25 (2018), 397–407. https://doi.org/10.1515/gmj-2016-0057

[23]   A. Indrea, A. Indrea and O. T. Pop, A new class of Kantorovich-type operators, Constr. Math. Anal. 3(3) (2020), 116–124. https://doi.org/10.33205/cma.773424

[24]   R. Ruchi, B. Baxhaku and P. N. Agrawal, GBS Operators of bivariate Bernstein-Durrmeyer-type on a triangle, Math. Methods Appl. Sci. 41(7) (2018), 2673–2683. https://doi.org/10.1002/mma.4771

[25]   H. M. Srivastava and V. Gupta, A certain family of summation integral type operators, Math. Comput. Modelling 37 (2003), 1307–1315. https://doi.org/10.1016/S0895-7177(03)90042-2

[26]   D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl. 13 (1968), 1173–1194.

[27]   A. Wafi and S. Khatoon, Convergence and Voronovskaja-type theorems for derivatives of generalized Baskakov operators, Central European Journal of Mathematics 6(2) (2008), 325–334. https://doi.org/10.2478/s11533-008-0025-9