Stability of a Solution for a Hybrid Fractional Differential Equation
Download PDF
Authors: M. HANNABOU, M. BOUAOUID AND K. HILAL
DOI: 10.46793/KgJMat2602.261H
Abstract:
This study focuses on examining the existence, uniqueness, and U-lam stability of a solution for a hybrid fractional equation by utilizing the derivative of Caputo-Hadamard (C-H). The primary tools used in our research are the Banach contraction mapping principle (BCMP) and Schaefer’s fixed point theorem. Additionally, we provide an example to demonstrate our results.
Keywords:
Existence, uniqueness, fractional derivative, stability.
References:
[1] A. Al Elaiw, M. Manigandan, M. Awadalla and K. Abuasbeh, Existence results by Mönch’s fixed point theorem for a tripled system of sequential fractional differential equations, AIMS Mathematics 8(2) (2023), 3969–3996. https://doi.org/10.3934/math.2023199
[2] S. Abbas, M. Benchohra, N. Hamidi and J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal. 21(175) (2018), 1027–1045.
[3] M. I. Abbas, Ulam stability and existence results for fractional differential equations with hybrid proportional-Caputo derivatives, Journal of Interdisciplinary Mathematics 25(2) (2022), 213–231. https://doi.org/10.23952/jnfa.2020.48
[4] M. I. Abbas and M. A. Ragusa, On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function, Symmetry 13(2) (2021). https://doi.org/10.3390/sym13020264
[5] R. Agarwal, S. Hristova and D. O’Regan, Stability of generalized proportional Caputo fractional differential equations by Lyapunov functions, Fractal and Fractional 6(1) (2022), 34 pages. https://doi.org/10.3390/fractalfract6010034
[6] B. Ahmad, A. Alsaedi, S. K Ntouyas and J. Tariboon, Hadamard-Type Fractional 3-Differential Equations, Inclusions and Inequalities, Springer International Publishing, Cham, Switzerland, 2017. https://doi.org/10.1007/978-3-319-52141-1
[7] B. Ahmad and S. K. Ntouyas, Existence and uniqueness of solutions for Caputo-Hadamard sequential fractional order neutral functional differential equations, Electron. J. Differ. Equ. 36 (2017), 1–11. http://ejde.math.txstate.edu
[8] M. Arab and M. Awadalla, A coupled system of Caputo-Hadamard fractional hybrid differential equations with three-point boundary conditions, Mathematical Problems in Engineering 2022 (2022), Article ID 1500577. https://doi.org/10.1155/2022/1500577
[9] Y. Arioua and N. Benhamidouche, Boundary value problem for Caputo-Hadamard fractional differential equations, Surv. Math. Appl. 12 (2017), 103–115. http://www.utgjiu.ro/math/sma
[10] H. Aydi, M. Arshad and M. De la Sen, Hybrid Ciric type graphic Y , Λ-contraction mappings with applications to electric circuit and fractional differential equations, Symmetry 12(3) (2020). https://doi.org/10.3390/sym12030467
[11] M. Awadalla, K. Abuasbeh, M. Subramanian and M. Manigandan, On a system of ψ-Caputo hybrid fractional differential equations with Dirichlet boundary conditions, Mathematics 10(10) (2022). https://doi.org/10.3390/math10101681
[12] M. Benchohra, S. Bouriah and J. R. Graef, Boundary value problems for non-linear implicit Caputo-Hadamard-type fractional differential equations with impulses, Mediterr. J. Math. 14 (2017), 206–216. https://doi.org/10.1007/s00009-017-1012-9
[13] M. Benchohra, S. Hamani and S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv. Math. Appl. 2008 (2008), 1–12. http://www.utgjiu.ro/math/sma
[14] W. Benhamida, S. Hamani and J. Henderson, Boundary value problems for Caputo-Hadamard fractional differential equations, Advances in the Theory of Nonlinear Analysis and its Application 2(3) (2018), 138–145. http://DOI:10.31197/atnaa.419517
[15] M. Bouaouid, M. Hannabou and K. Hilal, Nonlocal conformable-fractional differential equations with a measure of noncompactness in Banach spaces, J. Math. 2020 (2020), Article ID 5615080. https://doi.org/10.1155/2020/5615080
[16] M. Cichon and H. A. H. Salem, On the solutions of Caputo-Hadamard Pettis-type fractional differential equations, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), 3031–3053. https://doi.org/10.1007/s13398-019-00671-y
[17] A. Ganesh, S. Deepa, D. Baleanu, S. S. Santra, O. Moaaz, V. Govindan and R. Ali, Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform, AIMS Mathematics 7(2) (2022), 1791–1810. https://doi.org/10.3934/math.2022103
[18] M. Hannabou and K. Hilal, Existence results for a system of coupled hybrid differential equations with fractional order, Int. J. Differ. Equ. 2020 (2020), Article ID 3038427. https://doi.org/10.1155/2020/3038427
[19] K. Hilal and A. Kajouni, Boundary value problems for hybrid differential equations with fractional order, Adv. Differ. Equ. (2015). https://doi.org/10.1186/s13662-015-0530-7
[20] M. Houas, Existence results for a coupled system of fractional differential equations with multi-point boundary value problems, Mediterrenean Journal of Modeling and Simulation 10 (2018), 45–59. https://doi.org/10.1080/09720502.2020.1740499
[21] S. Gul, R. A. Khan, H. Khan, R. George, S. Etemad and S. Rezapour, Analysis on a coupled system of two sequential hybrid BVPs with numerical simulations to a model of typhoid treatment, Alexandria Engineering Journal 6(12) (2022), 10085–10098. https://doi.org/10.1016/j.aej.2022.03.020
[22] J. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ. (2012). https://doi.org/10.1186/1687-1847-2012-142
[23] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, Netherlands, 2006.
[24] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993. https://doi.org/10.12691/ajma-3-3-3
[25] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1993.
[26] M. Saqib, I. Khan and S. Shafie, Application of fractional differential equations to heat transfer in hybrid nanofluid: modeling and solution via integral transforms, Adv. Differ. Equ. 1 (2019), 1–18. https://doi.org/10.1186/s13662-019-1988-5
[27] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993.
[28] K. Shah and R. A. Khan, Existence and uniqueness of positive solutions to a coupled system of nonlinear fractional order differential equations with anti periodic boundary conditions, Differ. Equ. Appl. 7(2) (2015), 245–262. https://doi.org/10.7153/dea-07-14
[29] K. Shah, A. Ali and R. A. Khan, Degree theory and existence of positive solutions to coupled systems of multi-point boundary value problems, Bound. Value Probl. 2016(1) (2016), 43 pages. https://doi.org/10.1186/s13661-016-0553-3
[30] S. Sitho, S. K. Ntouyas and J. Tariboon, Existence results for hybrid fractional integro-differential equations, Bound. Value Probl. 1(113) (2015). https://doi.org/10.1186/s13661-015-0376-7
[31] M. A. Shahmohammadi, S. M. Mirfatah, H. Salehipour, M. Azhari and Ö. Civalek, Free vibration and stability of hybrid nanocomposite-reinforced shallow toroidal shells using an extended closed-form formula based on the Galerkin method, Mechanics of Advanced Materials and Structures 29(26) (2022), 5284–5300. https://doi.org/10.1080/15376494.2021.1952665
[32] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, NY, USA, 2010.
[33] J. Wang and Y. Zhang, Analysis of fractional order differential coupled systems,Math. Methods Appl. Sci. (2014). https://doi.org/10.1002/mma.3298
[34] G. Wang, X. Ren, L. Zhang and B. Ahmad, Explicit iteration and unique positive solution for a Caputo-Hadamard fractional turbulent flow model, IEEE Access 7 (2019), 109833–109839. https://doi.org/10.1109/ACCESS.2019.2933865
[35] W. Yukunthorn, B. Ahmad, S. K. Ntouyas and J. Tariboon, On Caputo-Hadamard type fractional impulsive hybrid systems with nonlinear fractional integral conditions, Nonlinear Anal. Hybrid Syst. 19 (2016), 77–92. https://doi.org/10.1016/j.nahs.2015.08.001
[36] X. Zhang, On impulsive partial differential equations with Caputo-Hadamard fractional derivatives, Adv. Differ. Equ. (2016). https://doi.org/10.1186/s13662-016-1008-y
[37] Y. Zhou, Basic Theory of Fractional Differential Equations, Xiangtan University, China, 2014.