A Lyapunov Type Inequality for a Class of Fractional Boundary Value Problems with Riemann-Liouville Derivative
Download PDF
Authors: A. S. SILVA
DOI: 10.46793/KgJMat2603.347S
Abstract:
In this paper, a Lyapunov-type inequality is obtained for a class of fractional boundary value problems involving Riemann-Liouville fractional derivative of orders α ∈ (1, 2) and β ∈ (0,α − 1). The study is based on the construction of a Green’s function and the obtaining of its corresponding maximum value.
Keywords:
Fractional differential equations, Lyapunov inequality, Riemman-Liouville derivative, Green’s function.
References:
[1] S. Dhar and J. T. Neugebauer, Lyapunov-type inequalities for a fractional boundary value problem with a fractional boundary condition, Nonlinear Dyn. Syst. Theory 22(2) (2022), 133–143.
[2] R. A. C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal. 16(4) (2013), 978–984. https://doi.org/10.2478/s13540-013-0060-5
[3] R. A. C. Ferreira, Lyapunov-type inequalities for some sequential fractional boundary value problems, Adv. Dyn. Syst. Appl. 11(1) (2016), 33–43.
[4] R. A. C. Ferreira, Lyapunov-type inequality for an anti-periodic fractional boundary value problem, Fract. Calc. Appl. Anal. 20(1) (2017), 284–291. https://doi.org/10.1515/fca-2017-0015
[5] H. Hochstadt, A new proof of stability estimate of Lyapunov, Proc. Am. Math. Soc. 14 (1963), 525–526. https://doi.org/10.2307/2033834
[6] A. A. Kilbas, H. M. Srivastava and J. J Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[7] M.K. Kwong, On Lyapunov’s inequality for disfocality, J. Math. Anal. Appl. 83(2) (1981), 486–494. https://doi.org/10.1016/0022-247X(81)90137-2
[8] A. Liapounoff, Probléme général de la stabilité du mouvement (in French) [General problem of motion stability], Ann. Fac. Sci. Toulouse Math. 9 (1907), 203–474. https://doi.org/10.5802/afst.246
[9] S. K. Ntouyas, B. Ahmad and J. Tariboon, A survey on recent results on Lyapunov-type inequalities for fractional differential equations, Fractal Fract. 273(6) (2022), 1–35. https://doi.org/10.3390/fractalfract6050273
[10] T. W. Reid, A matrix equation related to an non-oscillation criterion and Lyapunov stability, Q. Appl. Math. Soc. 23 (1965), 83–87. https://doi.org/10.1090/qam/176997
[11] T. W. Reid, A matrix Lyapunov inequality, J. Math. Anal. Appl. 32 (1970), 424–434. https://doi.org/10.1016/0022-247X(70)90308-2
[12] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993 [Translated from the 1987 Russian original].