Analysis of aWeak Galerkin Mixed Formulation for Maxwell’s Equations
Download PDF
Authors: A. ZAGHDANI, A. HASNAOUI AND S. SAYARI
DOI: 10.46793/KgJMat2603.387Z
Abstract:
In this paper we introduce and analyse a mixed weak Galekin finite element method for the Maxwell equations in the primary electric field-Lagrange multiplier. Our weak Galerkin method is equipped with stable finite elements composed of habitual polynomials of degree k for the electric field and polynomials of degree k + 1 for the Lagrange multiplier. Optimal order error estimations for the proposed weak Galerkin mixed finite element formulation are demonstrated and are confirmed numerically on a two dimensional bounded domain.
Keywords:
Weak Galerkin, mixed finite element methods, the Maxwell equations, polyhedral meshes.
References:
[1] I. Babuka, The finite element method with Lagrangian multiplier, Numer. Math. 20 (1973), 179–192. https://doi.org/10.1007/BF01436561
[2] F. Brezzi, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers, R.A.I.R.O. Analyse Numérique 8 (1974), 129–151. https://doi.org/10.1051/m2an/197408R201291
[3] Q. H. Li and J. Wang, Weak Galerkin finite element methods for parabolic equations, Numer. Methods Partial Differential Equations 29 (2013), 2004–2024.
[4] J. Lia, X. Ye and S. Zhang, A weak Galerkin least-squares finite element method for div-curl systems, J. Comput. Phys. 363 (2018), 79–86. https://doi.org/10.1016/j.jcp.2018.02.036
[5] J. L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, Dunot, Paris, 1968.
[6] Y. Liu and J. Wang, Simplified weak Galerkin and new finite difference schemes for the Stokes equation, J. Comput. Appl. Math. 361 (2019), 176–206. https://doi.org/10.1016/j.cam.2019.04.024
[7] L. Mu, J. Wang, G. Wei, X. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys. 250 (2013), 106–125. https://doi.org/10.1016/j.jcp.2013.04.042
[8] L. Mu, J. Wang, X. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys. 325 (2016), 157–173. https://doi.org/10.1016/j.jcp.2016.08.024
[9] L. Mu, J. Wang, and X. Ye. Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model. 12(1) (2015), 31–53. https://doi.org/10.48550/arXiv.1204.3655
[10] S. Sayari, A. Zaghdani, and M. El Hajji, Analysis of HDG method for the reaction diffusion, Appl. Numer. Math. 156 (2020), 396–409. https://doi.org/10.1016/j.apnum.2020.05.012
[11] E. Sayari, Etude Numérique de quelques équations aux dérivées partielles par la méthode discontinue de Galerkin, Ph.D. Thesis, University of Cergy-Pontoise, 2010.
[12] R. Wang, X. Wang, Q. Zhai and K. Zhang, A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers, Numer. Methods Partial Differential Equations 34(3) (2018), 1009–1032. https://doi.org/10.1002/num.22242
[13] J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math. 241 (2013), 103–115. https://doi.org/10.1016/j.cam.2012.10.003
[14] J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comput. 83(289) (2014), 2101–2126. https://www.jstor.org/stable/24488592
[15] A. Zaghdani, S. Sayari, and M. El Hajji, A new hybridized mixed weak Galerkin method for second-order elliptic problems, J. Comput. Math. 40(4) (2022), 499–516. https://doi.org/10.4208/jcm.2011-m2019-0142
[16] A. Zaghdani, Formulations discontinues de Galerkin pour les equations de Maxwell, Ph.D. Thesis, University of Paris Sud, 2006.
[17] A. Zaghdani and C. Daveau, Two new discrete inequalities of Poincaré-Friedrichs on discontinuous spaces for Maxwell’s equations, C. R. Acad. Sci. Paris. Ser. I 342(1) (2006), 29–32. https://doi.org/10.1016/j.crma.2005.10.026
[18] A. Zaghdani and C. Daveau, On the coupling of LDG-FEM and BEM methods for the three dimensional magnetostatic problem, Appl. Math. Comput. 217(5) (2010), 1791–1810. https://doi.org/10.1016/j.amc.2010.07.001
[19] A. Zaghdani and M. Ezzat, A new mixed discontinuous Galerkin method for the electrostatic field, Adv. Differ. Equ. 487 (2019). https://doi.org/10.1186/s13662-019-2420-x
[20] H. Zhang, Y. Zou, S. Chai and H. Yue, Weak Galerkin method with (r,r − 1,r − 1)− order finite elements for second order parabolic equations, Appl. Math. Comput. 275 (2016), 24–40. https://doi.org/10.1016/j.amc.2015.11.046
[21] H. Zhang, Y. Zou, Y. Xu, Q. Zhai and H. Yue, Weak Galerkin finite element method for second order parabolic equations, Int. J. Numer. Anal. Model. 13(4) (2016), 525–544.