Analysis of aWeak Galerkin Mixed Formulation for Maxwell’s Equations


Download PDF

Authors: A. ZAGHDANI, A. HASNAOUI AND S. SAYARI

DOI: 10.46793/KgJMat2603.387Z

Abstract:

In this paper we introduce and analyse a mixed weak Galekin finite element method for the Maxwell equations in the primary electric field-Lagrange multiplier. Our weak Galerkin method is equipped with stable finite elements composed of habitual polynomials of degree k for the electric field and polynomials of degree k + 1 for the Lagrange multiplier. Optimal order error estimations for the proposed weak Galerkin mixed finite element formulation are demonstrated and are confirmed numerically on a two dimensional bounded domain.



Keywords:

Weak Galerkin, mixed finite element methods, the Maxwell equations, polyhedral meshes.



References:

[1]   I. Babu˘s                                         ka, The finite element method with Lagrangian multiplier, Numer. Math. 20 (1973), 179–192. https://doi.org/10.1007/BF01436561

[2]   F. Brezzi, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers, R.A.I.R.O. Analyse Numérique 8 (1974), 129–151. https://doi.org/10.1051/m2an/197408R201291

[3]   Q. H. Li and J. Wang, Weak Galerkin finite element methods for parabolic equations, Numer. Methods Partial Differential Equations 29 (2013), 2004–2024.

[4]   J. Lia, X. Ye and S. Zhang, A weak Galerkin least-squares finite element method for div-curl systems, J. Comput. Phys. 363 (2018), 79–86. https://doi.org/10.1016/j.jcp.2018.02.036

[5]   J. L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, Dunot, Paris, 1968.

[6]   Y. Liu and J. Wang, Simplified weak Galerkin and new finite difference schemes for the Stokes equation, J. Comput. Appl. Math. 361 (2019), 176–206. https://doi.org/10.1016/j.cam.2019.04.024

[7]   L. Mu, J. Wang, G. Wei, X. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys. 250 (2013), 106–125. https://doi.org/10.1016/j.jcp.2013.04.042

[8]   L. Mu, J. Wang, X. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys. 325 (2016), 157–173. https://doi.org/10.1016/j.jcp.2016.08.024

[9]   L. Mu, J. Wang, and X. Ye. Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model. 12(1) (2015), 31–53. https://doi.org/10.48550/arXiv.1204.3655

[10]   S. Sayari, A. Zaghdani, and M. El Hajji, Analysis of HDG method for the reaction diffusion, Appl. Numer. Math. 156 (2020), 396–409. https://doi.org/10.1016/j.apnum.2020.05.012

[11]   E. Sayari, Etude Numérique de quelques équations aux dérivées partielles par la méthode discontinue de Galerkin, Ph.D. Thesis, University of Cergy-Pontoise, 2010.

[12]   R. Wang, X. Wang, Q. Zhai and K. Zhang, A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers, Numer. Methods Partial Differential Equations 34(3) (2018), 1009–1032. https://doi.org/10.1002/num.22242

[13]   J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math. 241 (2013), 103–115. https://doi.org/10.1016/j.cam.2012.10.003

[14]   J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comput. 83(289) (2014), 2101–2126. https://www.jstor.org/stable/24488592

[15]   A. Zaghdani, S. Sayari, and M. El Hajji, A new hybridized mixed weak Galerkin method for second-order elliptic problems, J. Comput. Math. 40(4) (2022), 499–516. https://doi.org/10.4208/jcm.2011-m2019-0142

[16]   A. Zaghdani, Formulations discontinues de Galerkin pour les equations de Maxwell, Ph.D. Thesis, University of Paris Sud, 2006.

[17]   A. Zaghdani and C. Daveau, Two new discrete inequalities of Poincaré-Friedrichs on discontinuous spaces for Maxwell’s equations, C. R. Acad. Sci. Paris. Ser. I 342(1) (2006), 29–32. https://doi.org/10.1016/j.crma.2005.10.026

[18]   A. Zaghdani and C. Daveau, On the coupling of LDG-FEM and BEM methods for the three dimensional magnetostatic problem, Appl. Math. Comput. 217(5) (2010), 1791–1810. https://doi.org/10.1016/j.amc.2010.07.001

[19]   A. Zaghdani and M. Ezzat, A new mixed discontinuous Galerkin method for the electrostatic field, Adv. Differ. Equ. 487 (2019). https://doi.org/10.1186/s13662-019-2420-x

[20]   H. Zhang, Y. Zou, S. Chai and H. Yue, Weak Galerkin method with (r,r 1,r 1)order finite elements for second order parabolic equations, Appl. Math. Comput. 275 (2016), 24–40. https://doi.org/10.1016/j.amc.2015.11.046

[21]   H. Zhang, Y. Zou, Y. Xu, Q. Zhai and H. Yue, Weak Galerkin finite element method for second order parabolic equations, Int. J. Numer. Anal. Model. 13(4) (2016), 525–544.