Lyapunov Type Inequality for an Anti-Periodic Conformable Boundary Value Problem

Download PDF


DOI: 10.46793/KgJMat2102.289J


In this article, we present a Lyapunov-type inequality for a conformable boundary value problem associated with anti-periodic boundary conditions. To demonstrate the applicability of established result, we obtain a lower bound on the eigenvalue of the corresponding eigenvalue problem.


Conformable derivative, boundary value problem, anti-periodic boundary conditions, Green’s function, Lyapunov-type inequality, eigenvalue.


[1]   T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), 57–66.

[2]   T. Abdeljawad, J. Alzabut and F. Jarad, A generalized Lyapunov-type inequality in the frame of conformable derivatives, Adv. Difference Equ. 2017(321) (2017), 10 pages.

[3]   D. R. Anderson, Positive Green’s functions for boundary value problems with conformable derivatives, in: T. M. Rassias and V. Gupta (Eds.), Mathematical Analysis, Approximation Theory and Their Applications, Springer, Basel, 2016, 63–74.

[4]   D. R. Anderson and R. I. Avery, Fractional-order boundary value problem with Sturm-Liouville boundary conditions, Electron. J. Differential Equations 2017(29) (2017), 10 pages.

[5]   D. R. Anderson, E. Camrud and D. J. Ulness, On the nature of the conformable derivative and its applications to physics, J. Fract. Calc. Appl. 10(2) (2019), 92–135.

[6]   D. R. Anderson and D. J. Ulness, Properties of the Katugampola fractional derivative with potential application in quantum mechanics, J. Math. Phys. 56(6) (2015), 18 pages.

[7]   A. Atangana, D. Baleanu and A. Alsaedi, New properties of conformable derivative, Open Math. 13 (2015), 889–898.

[8]   R. C. Brown and D. B. Hinton, Lyapunov inequalities and their applications, in: T. M. Rassias (Ed.), Survey on Classical Inequalities, Math. Appl. 517, Springer and Business Media, Dordrecht, 2000, 1–25.

[9]   Y. Gholami and K. Ghanbari, Fractional Lyapunov inequalities on spherical shells, Differ. Equ. Appl. 9(3) (2017), 353–368.

[10]   F. Jarad, E. Ugurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Adv. Difference Equ. 2017(247) (2017), 16 pages.

[11]   U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl. 6(4) (2014), 1–15.

[12]   R. Khalil, M. Al Horani, A. Yousef and M. Sababheh,A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65–70.

[13]   A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[14]   A. Liapounoff, Problème général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse Math. 9 (1907), 203–474.

[15]   M. D. Ortigueira and J. A. T Machado, What is a fractional derivative?, J. Comput. Phys. 293 (2015), 4–13.

[16]   B. G. Pachpatte, On Lyapunov-type inequalities for certain higher order differential equations, J. Math. Anal. Appl. 195(2) (1995), 527–536.

[17]   N. Pathak, Lyapunov-type inequality and eigenvalue estimates for fractional problems, Ph.D. Thesis, Southern Illinois University, Carbondale, 2016.

[18]   J. P. Pinasco, Lyapunov-type Inequalities With Applications to Eigenvalue Problems, Springer, New York, 2013.

[19]   I. Podlubny, Fractional Differential Equations, Academic Press Inc., San Diego, 1999.

[20]   V. E. Tarasov, No nonlocality. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul. 62 (2018), 157–163.

[21]   A. Tiryaki, Recent developments of Lyapunov-type inequalities, Adv. Dyn. Syst. Appl. 5(2) (2010), 231–248.

[22]   X. Yang, Y. Kim and K. Lo, Lyapunov-type inequality for a class of even-order linear differential equations, Appl. Math. Comput. 245 (2014), 145–151.

[23]   X. Yang, Y. Kim and K. Lo, Lyapunov-type inequalities for a class of higher-order linear differential equations, Appl. Math. Lett. 34 (2014), 86–89.

[24]   D. Zhao and M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo 54(3) (2017), 903–917.