On a Family of $(p,q)$-Hybrid Polynomials

Download PDF


DOI: 10.46793/KgJMat2103.409Y


In this paper, the class of (p,q)-Bessel-Appell polynomials is introduced. The generating function, series definition and determinant definition of this class are established. Certain members of (p,q)-Bessel-Appell polynomials are considered and some properties of these members are also derived. Further, the class of 2D (p,q)-Bessel-Appell polynomials is introduced by means of the generating function and series definition. In addition, the graphical representations of some members of (p,q)-Bessel-Appell polynomials and 2D (p,q)-Bessel-Appell polynomials are plotted with the help of Matlab.


(p,q)-Bessel polynomials, generating relations, determinant definition, (p,q)-Appell polynomials.


[1]   W. A. Al-Salam, q-Appell polynomials, Ann. Mat. Pura Appl. 77(4) (1967), 31–45.

[2]   P. Appell, Sur une classe de polynômes, Ann. Sci. Éc. Norm. Supér. 9(4) (1880), 119–144.

[3]   R. Chakrabarti and R. Jagannathan, A (p,q)-oscillator realization of two-parameter quantum algebras, J. Phys. A 24(13) (1991), L711.

[4]   U. Duran and M. Acikgoz, Apostol type (p,q)-Bernoulli, (p,q)-Euler and (p,q)-Genocchi polynomials and numbers, Commun. Math. Stat. 8 (2017), 7–30.

[5]   U. Duran, M. Acikgoz and S. Araci, On some polynomials derived from (p,q)-calculus, Journal of Computational and Theoretical Nanoscience 13 (2016), 7903–7908.

[6]   U. Duran, M. Acikgoz and S. Araci, On higher order (p,q)-Frobenius-Euler polynomials, TWMS J. Pure Appl. Math. 8 (2017), 198–208.

[7]   E. Grosswald, Bessel Polynomials, Springer, Berlin, New York, 1978.

[8]   V. Gupta, (p,q)-Baskakov-Kantorovich operators, Appl. Math. Inf. Sci. 10 (2016), 1551–1556.

[9]   V. Gupta and A. Aral, Bernstein durrmeyer operators based on two parameters, Facta Univ. Ser. Math. Inform. 31 (2016), 79–95.

[10]   M. E. Keleshteri and N. I. Mahmudov, A study on q-Appell polynomials from determinantal point of view, Appl. Math. Comput. 260 (2015), 351–369.

[11]   P. N. Sadjang, On (p,q)-Appell oolynomials, Anal. Math. (2019), DOI 10.1007/s10476-019-0826-z.

[12]   P. N. Sadjang, On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas, Results Math. (2018), 73–39.

[13]   P. N. Sadjang, q-Addition theorems for the q-Appell polynomials and the associated classes of q-polynomials expansions, J. Korean Math. Soc. 55 (2018), 1179–1192.

[14]   A. Sharma and A. Chak, The basic analogue of a class of polynomials, Riv. Math. Univ. Parma 5 (1954), 325–337.

[15]   I. Sheffer, Note on Appell polynomials, Bull. Amer. Math. Soc. 51 (1945), 739–744.

[16]   C. Thorne, A property of Appell sets, Amer. Math. Monthly 52 (1945), 191–193.

[17]   R. Varma, On Appell polynomials, Proc. Amer. Math. Soc. 2 (1951), 593–596.

[18]   S.-l. Yang and S.-n. Zheng, A determinant expression for the generalized Bessel polynomials, J. Appl. Math. 2013 (2013), 1–6.

[19]   G. Yasmin, A. Muhyi and S. Araci, Certain results of q-Sheffer-Appell polynomials, Symmetry 11(2) (2019), 1–19.