Two-dimensional Dynamics of Cubic Maps

Download PDF


DOI: 10.46793/KgJMat2103.427D


We investigate the global properties of two cubic maps on the plane, we try to explain the basic mechanisms of global bifurcations leading to the creation of nonconnected basins of attraction. It is shown that in some certain conditions the global structure of such systems can be simple. The main results here can be seen as an improvement of the results of stability and bifurcation analysis.


Bifurcation basins, attractors, manifolds, polynomial diffeomorphisms.


[1]   H. R. Dullin and J. D. Meiss, Generalized Hénon maps: the cubic diffeomorphisms of the plane, Physica D 14 (2000), 262–289.

[2]   I. Gumowski and C. Mira, Dynamique Chaotique, Cepadues Edition, Toulouse, 1980.

[3]   V. S. Gonchenko, Y. A. Kuznetsov and H. G. E. Meijer, Generalized Hénon map and bifurcations of homoclinic tangencies, SIAM J. Appl. Dyn. Syst. 4 (2005), 407–736.

[4]   E. I. Jury, Inners and Stability of Dynamics, Wiley, New York, 1974.

[5]   Yu. A. Kuznetsov, H. G. E. Meijer and L. van Veen,  The fold-flip bifurcation, IJBC 14 (2004), 2253–2282.

[6]   C. Mira, L. Gardini, A. Barugola and J. C. Cathala, Chaotic Dynamics in Two-Dimensional non Invertible Maps, World Scientific, SIngapore, New Jersey, London, Hong Kong, 1996.

[7]   H. K. Sarmah and R. Paul, Period doubling route to chaos in a two parameter invertible map with constant Jacobian, IJRRAS 3(1) (2010), 72–82.

[8]   N. Sibony, Dynamique des applications rationnelles de Pk, in: Dynamique et Géométrie Complexes, Soc. Math. France, Paris, 1999, 97–185.

[9]   J. Silverman, Geometric and arithmetic properties of the Hénon map, Math. Z. 215 (1994), 237–250.

[10]   S. Smale, Diffeomorphisms with Many Periodic Points, Differential and Combinatorial Topology, Princeton University Press, Princeton, 1965, 63–80.

[11]   J. C. Sprott, High-dimensional dynamics in the delayed Hénon map, EJTP 3 (2006), 19–35.