A Study of Conformally Flat Quasi-Einstein Spacetimes with Applications in General Relativity

Download PDF

Authors: V. H AND A. KUMARA H

DOI: 10.46793/KgJMat2103.477V


In this paper we consider conformally flat (QE)4 spacetime and obtained several important results. We study application of conformally flat (QE)4 spacetime in general relativity and Ricci soliton structure in a conformally flat (QE)4 perfect fluid spacetime.


Quasi-Einstein spacetime, perfect fluid spacetime, Einstein field equation, energy momentum tensor, Ricci solitons, conformal curvature tensor.


[1]   Z. Ahsan and S. A. Siddiqui, Concircular curvature tensor and fluid spacetimes, Internat. J. Theoret. Phys. 48 (2009), 3202–3212.

[2]   L. Amendola and S. Tsujikawa, Dark Energy: Theory and Observations, Cambridge University Press, Cambridge, 2010.

[3]   C. L. Bejan and M. Crasmareanu, Ricci solitons in manifolds with quasi-constant curvature, Publ. Math. Debrecen 78(1) (2011), 235–243.

[4]   A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 1987.

[5]   M. C. Chaki and S. Ray, Spacetimes with covariant constant energy momentum tensor, Internat. J. Theoret. Phys. 35(5) (1996), 1027–1032.

[6]   M. C. Chaki and R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen 57 (2000), 297–306.

[7]   B. Y. Chen and K. Yano, Hypersurfaces of a conformally flat space, Tensor (N.S.) 26 (1972), 315–321.

[8]   A. De, C. Özgür and U. C. De, On conformally flat almost pseudo-Ricci symmetric spacetimes, Internat. J. Theoret. Phys. 51 (2012), 2878–2887.

[9]   U. C. De and L. Velimirović, Spacetimes with semisymmetric energy momentum tensor, Internat. J. Theoret. Phys. 54 (2015), 1779–1783.

[10]   G. F. R. Ellis, Relativistic Cosmology, in: R. K. Sachs (Ed.) General Relativity and Cosmology, Academic Press, London, 1971.

[11]   S. Güler and S. A. Demirbağ, A study of generalized quasi Einstein spacetime with application in general relativity, International Journal of Theoretical Physics 55 (2016), 548–562.

[12]   R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71 (1988), 237–261.

[13]   S. Mallick and U. C. De, Spacetimes with pseudosymmetric energy momentum tensor, Communications Physics 26(2) (2016), 121–128.

[14]   S. Mallick, Y. J. Suh and U. C. De, A spacetime with pseudo-projective curvature tensor, J. Math. Phys. 57 (2016), Paper ID 062501.

[15]   D. G. Prakasha and B. S. Hadimani, η-Ricci soliton on para-Sasakian manifolds, J. Geom. 108 (2017), 383–392.

[16]   S. Ray and Guha, On perfect fluid pseudo Ricci symmetric spacetime, Tensor (N.S.) 67 (2006), 101–107.

[17]   A. A. Shaikh, D. W. Yoon and S. K. Hui, On quasi Eienstien spacetime, Tsuukiba J. Math. 33(2) (2009), 305–326.

[18]   Venkatesha and D. M. Naik, Certain results on K-para conatct and para Sasakian manifold, J. Geom. 108 (2017), 939–952.

[19]   Venkatesha and H. A. Kumara, Ricci soliton and geometrical structure in a perfect fluid spacetime with torse-forming vector field, Afr. Mat. (2019), DOI 10.1007/s13370-019-00679-y.

[20]   K. Yano, Concircular geometry I, Proc. Imp. Acad. Tokyo. 16 (1940), 195–200.

[21]   K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.

[22]   K. Yano and M. Kon, Structure on Manifold, Series in Pure Mathematics, World Scientific Publishing, Singapore, 1984.