Geometric Invariants Under the Möbius Action of the Group SL(2;R)


Download PDF

Authors: D. BISWAS AND S. DUTTA

DOI: 10.46793/KgJMat2106.925B

Abstract:

In this paper we have introduced new invariant geometric objects in the homogeneous spaces of complex, dual and double numbers for the principal group SL(2; ), in the Klein’s Erlangen Program. We have considered the action as the Möbius action and have taken the spaces as the spaces of complex, dual and double numbers. Some new decompositions of SL(2; ) have been used.



Keywords:

Lie group, SL(2; ) group, Invariants, Möbius transformation, Homogeneous spaces, Iwasawa decomposition



References:

[1]   M. A. Bandres and M. Guizar-Sicairos, Paraxial group, Optics Letters 34 (2009), 13–15.

[2]   J. Cnops, An Introduction to Dirac Operators on Manifolds, Progress in Mathematical Physics 24, Birkhäuser Boston, Inc., Boston, MA, 2002.

[3]   A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics, Courier Corporation, London, New York,1994.

[4]   A. A. Kirilov, Elements of the Theory of Representations, Springer-Verlag, Berlin, 1972.

[5]   A. V. Kisil, Isometric action of SL2() on homogeneous spaces, Adv. Appl. Clifford Algebr. 20 (2010), 299–312.

[6]   V. V. Kisil, Analysis in R1,1 or the principal function theory, Complex Variable Theory and Applications 40 (1999), 93–118.

[7]   V. V. Kisil, Spectrum as the support of functional calculus, in: Functional Analysis and its Applications, North-Holland Math. Stud. 197, Elsevier Sci. B. V., Amsterdam, 2004, 133–141.

[8]   V. V. Kisil, Erlangen program at large-1: Geometry of invariants, SIGMA Symmetry Integrability Geom. Methods Appl. 6 (2010), 45 pages.

[9]   V. V. Kisil., Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of SL(2; ), Imperial College Press, London, 2012.

[10]   V. V. Kisil and D. Biswas, Elliptic, parabolic and hyperbolic analytic function theory-0: Geometry of domains, Complex Analysis and Free Boundary Flows, Trans. Inst. Math. of the NAS of Ukraine 1 (2004), 100–118.

[11]   F. Klein, Elementary Mathematics from an Advanced Standpoint Geometry, Translated from the 3rd German edition by E.R. Hadrick and C.A., Dover Publication Inc., New York, 2004.

[12]   S. Lang, SL2(R), Graduate Texts in Mathematics 105, Springer-Verlag, New York, 1985.

[13]   R. Mirman, Quantum Field Theory, Conformal Group Theory, Conformal Field Theory. Mathematical and Conceptual Foundations, Physical and Geometrical Applications, Graduate Texts in Mathematics, Nova Science Publishers Inc., New York, 2001.

[14]   R. W. Sharpe, Differential Geometry, Graduate Texts in Mathematics 166, Springer-Verlag, New York, 1997.

[15]   J. Stillwell, The Four Pillars of Geometry, Undergraduate Texts in Mathematics, Springer, New York, 2005.

[16]   I. M. Yaglom, A Simple non-Euclidean Geometry and its Physical Basis, Springer-Verlag, New York, Heidelberg, 1979.

[17]   I. M. Yaglom, Felix Klein and Sophus Lie, Birkhäuser Boston, Inc., Boston, MA, 1988.