Pseudo Commutative Double Basic Algebras

Download PDF

Authors: S. GHORBANI

DOI: 10.46793/KgJMat2106.977G


In this paper, we study the concept of pseudo commutative double basic algebras and investigate some related results. We prove that there are relations among pseudo commutative double basic algebras and other logical algebras such as pseudo hoops, pseudo BCK-algebras and double MV-algebras. We obtain a close relation between pseudo commutative double basic algebras and pseudo residuted l-groupoids. Then we investigate the properties of the boolean center of pseudo commutative double basic algebras and we use the boolean elements to define and study algebras on subintervals of pseudo commutative double basic algebras.


Pseudo commutative double basic algebra, double MV-algebra, pseudo residuted l-groupoid, boolean element.


[1]   R. Balbes and P.  Dwinger, Distributive Lattices, University of Missouri Press, Columbia, 1974.

[2]   B. Bosbach, Komplementare Halbgruppen. Axiomatik und aritmetik, Fundam. Math. 64 (1969), 257–287.

[3]   B. Bosbach, Komplementare Halbgruppen. Kongruenzen und quotienten, Fundam. Math. 69 (1970), 1–14.

[4]   B. Bosbach, Residuation groupoids, Results Math. 5 (1982), 107–122.

[5]   M. Botur and R. Halas, Finite commutative basic algebras are MV-algebras, J. Mult.-Valued Logic Soft Comput. 14 (2008), 69–80.

[6]   M. Botur and R. Halas, Commutative basic algebras and non-associative fuzzy logics, Arch. Math. Logic 48 (2009), 243–255.

[7]   M. Botur, I. Chajda and R. Halas, Are basic algebras residuated structures? Soft Comput. 14 (2010), 251–255.

[8]   I. Chajda, R. Halas and J.  Kuhr, Distributive lattices with sectionally antitone involutions, Acta Sci. Math. (Szeged) 71 (2005), 19–33.

[9]   I. Chajda and J.  Kuhr, A note on interval MV-algebras, Math. Slovaca 56 (2006), 47–52.

[10]   I. Chajda, R. Halas and J.  Kuhr, Semilattice Structures, Research and Exposition in Mathematics 30, Heldermann, Verlag, 2007.

[11]   I. Chajda, R. Halas and J.  Kuhr, Many-valued quantum algebras, Algebra Universalis 60 (2009), 63–90.

[12]   I. Chajda, Double basic algebras, Order 26 (2009), 149–162.

[13]   I. Chajda, M. Kolarik and J.  Kuhr, On double basic algebras and pseudo-effect algebras, Order 28 (2011), 499–512.

[14]   I. Chajda, M. Kolarik and J. Krnavek, Pseudo Basic Algebras, J. Mult.-Valued Logic Soft Comput. 21 (2013), 113–129.

[15]   I. Chajda, Basic algebras, logics, trends and applications, Asian-Eur. J. Math. 8 (2015), Paper ID 1550040, 46 pages.

[16]   C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 464–490.

[17]   L. Ciungu, Non-commutative Multiple-Valued Logic Algebras, Springer International Publishing Switzerland, Basel, 2014.

[18]   A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Kluwer, Dordrecht, 2000.

[19]   G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, In: Proc. DMTCSS01: Combinatorics, Computability and Logic, Springer, London, 2001, 97–114.

[20]   Sh. Ghorbani, Localization of hoop-algebras, J. Adv. Res. Pure Math. 5 (2013), 1–13.

[21]   G. Gratzer, Lattice Theory. First Concepts and Distributive Lattices, A Series of Books in Mathematics, Freeman, San Francisco, 1972.

[22]   P. Hájek, Metamathematics of Fuzzy Logic, Kluwer, Dordrecht, 1998.

[23]   M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939), 335–354 .