Solution Set for Impulsive Fractional Differential Inclusions

Download PDF

Authors: M. BEDDANI

DOI: 10.46793/KgJMat2201.049B


This paper aims to an initial value problem for an impulsive fractional differential inclusion with the Riemann-Liouville fractional derivative. We apply Covitz and Nadler theorem concerning the study of the fixed point for multivalued maps to obtain the existence results for the given problems. We also obtain some topological properties about the solution set.


Impulsive fractional differential inclusions, Riemann-Liouville fractional derivative, fixed point, solution set, compactness, contractible.


[1]   S. Abbes and M. Benchohra, Advanced Functional Evolution Equations and Inclusions, Springer, New York, London, 2015.

[2]   R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109 (2010), 973–1033.

[3]   R. P. Agarwal, M. Benchohra, J. Nieto and A. Ouahab, Some results for integral inclusions of Volterra type in Banach spaces, Adv. Difference Equ. (2010), DOI 10.1155/2010/798067.

[4]   Z. Agur, L. Cojocaru, G. Mazaur, R. M. Anderson and Y. L. Danon, Pulse mass measles vaccination across age cohorts, Proc. Nat. Acad. Sci. USA 90 (1993), 11698–11702.

[5]   J. Andres and L. Górniewicz, Topological Principles for Boundary Value Problems, Kluwer, Dordrecht, 2003.

[6]   J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, New York, 1984.

[7]    J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.

[8]   M. Benchohra, J. Nieto and A. Ouahab, Impulsive differential inclusions involving evolution operators in separable Banach spaces, Ukrainian Math. J. 64 (2012), 991–1018.

[9]   C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer-Verlag, Berlin, Heidelberg, New York, 1977.

[10]   Y. Chalco-Cano, J. J. Nieto, A. Ouahab and H. Romn-Flores, Solution set for fractional differential equations with Riemann-Liouville derivative, Fract. Calc. Appl. Anal. 16 (2013), 682–694.

[11]   H. Covitz and S. B. Nadler, Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5–11.

[12]   K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin, New York, 1992.

[13]   D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. (1996), 609–625.

[14]   K. Djebali, L. Górniewicz and A. Ouahab, Solutions Sets for Differential Equations and Inclusions, De Gruyter Series in Nonlinear Analysis and Applications 18, de Gruyter, Berlin, 2013.

[15]   S. Djebali, L. Górniewicz and A. Ouahab, Existence and Structure of Solution Sets for Impulsive Differential Inclusions, a Survey, Lecture Notes in Nonlinear Analysis 13, Nicolaus Copernicus University, Juliusz Schauder Center for Nonlinear Studies, Torun, 2012.

[16]   S. Djebali, L. Górniewicz and A. Ouahab, Topological structure of solution sets for impulsive differential inclusions in Fréchet spaces, Nonlinear Anal. 74 (2011), 2141–2169.

[17]   R. Dragoni, P. Nistri, P. Zeccaand and J. W. Macki, Solution Sets of Differential Equations in Abstract Spaces, Longman, Edinburgh, 1996.

[18]   A. M. A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (1998), 181–186.

[19]   A. M. A. El-Sayed and A. G. Ibrahim, Multivalued fractional differential equations, Appl. Math. Comput. 68 (1995), 15–25.

[20]   L. Gaul, P. Klein and S. Kempfle, Damping description involving fractional operators, Mechanical Systems and Signal Processing 5 (1991), 81–88.

[21]   W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophysical Journal 68 (1995), 46–53.

[22]   L. Górniewicz, On the solution sets of differential inclusions, J. Math. Anal. Appl. (1986), 235–244.

[23]   L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications 495, Kluwer Academic Publishers, Dordrecht, 1999.

[24]   A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.

[25]   A. Grudzka and S. Ruszkowski, Structure of the solutions set to diffferential inclusions with impulses and variable times, Electronic J. Diff. Equ. (2015), 1–16.

[26]   J. Henderson and A. Ouahab, Impulsive differential inclusions with fractional order, Comput. Math. Appl. 59 (2010), 1191–1226.

[27]   S. Hu and N. S. Papageorgiou, Handbook of Multi-Valued Analysis, Volume I: Theory, Kluwer, Dordrecht, 1997.

[28]   S. Hu and N. S. Papageorgiou, Handbook of Multi-Valued Analysis Volume II: Applications, Kluwer, Dordrecht, 2000.

[29]   M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Nonlinear Analysis and Applications 7, Walter de Gruyter, Berlin, New York, 2001.

[30]   E. Krüger-Thiemer, Formal theory of drug dosage regimens. I, J. Theoret. Biol. 13 (1966), 212–235.

[31]   E. Krüger-Thiemer, Formal theory of drug dosage regimens: II. The exact plateau effect, J. Theoret. Biol. 23 (1969), 169–190.

[32]   A. Lasota and Z. Opial, An application of the Kakutaniky fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786.

[33]   J. M. Lasry and R. Robert, Analyse Non Lineaire Multivoque, Centre de Recherche de Mathématique de la Décision, Université de Dauphine, Paris, CNRS, 1976.

[34]   F. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher, Relaxation in filled polymers, a fractional calculus approach, The Journal of Chemical Physics (1995), 7180–7186.

[35]   J. Musielak, Introduction to Functional Analysis, PWN, Warsaw, 1976.

[36]   D. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), 859–903.

[37]   Z. Yong, W. Rong-Nian and P. Li, Topological Structure of the Solution Set for Evolution Inclusions, Springer-Verlag, New York, 2017.

[38]   S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional diffrential equations, Electron. J. Differential Equations 36 (2006), 1–12.

[39]   Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.

[40]   Y. Zhou, Fractional Evolution Equations and Inclusions, Analysis and Control, Elsevier, Amsterdam, 2015.