### On Rapid Equivalence and Translational Rapid Equivalence

Download PDF

**Authors:**V. TIMOTIC, D. DJURCIC AND M. R. ŽIžOVIC

**DOI:**10.46793/KgJMat2202.259T

**Abstract:**

In this paper we will prove some properties of the rapid equivalence and consider some selection principles and games related to rapidly varying sequences.

**Keywords:**

Rapid equivalence, the class R

_{∞,s}, selection principles

**References:**

[1] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.

[2] D. Djurčić, N. Elez and Lj. D. R. Kočinac, On a subclass of the class of rapidly varying sequences, Appl. Math. Comput. 251 (2015), 626–632.

[3] D. Djurčić, Lj. D. R. Kočinac and M. R. Žižović, Some properties of rapidly varying sequences, J. Math. Anal. Appl. 327(2) (2007), 1297–1306.

[4] D. Djurčić, Lj. D. R. Kočinac and M. R. Žižović, Rapidly varying sequences and rapid convergence, Topology Appl. 155 (2008), 2143–2149.

[5] D. Djurčić, Lj. D. R. Kočinac and M. R. Žižović, A few remarks on divergent sequences: Rates of divergence, J. Math. Anal. Appl. 360 (2009), 588–598.

[6] D. Djurčić, Lj. D. R. Kočinac and M. R. Žižović, A few remarks on divergent sequences: Rates of divergence II, J. Math. Anal. Appl. 327 (2010), 705–709.

[7] D. Djurčić and A. Torgašev, Some asymptotic relations for the generalized inverse, J. Math. Anal. Appl. 325 (2007), 1397–1402.

[8] N. Elez and D. Djurčić, Some properties of rapidly varying functions, J. Math. Anal. Appl. 401 (2013), 888–895.

[9] Lj. D. R. Kočinac, α_{i}-selection principles and games, Contemp.
Math. 533 (2011), 107–124.

[10] S. Matucci and P. Rehak, Rapidly varying sequences and second-order diﬀerence equations, Math. Comput. Model. 14 (2008), 17–30.

[11] S. Matucci and P. Rehak, Rapidly varying decreasing solutions of half-linear diﬀerence equations, Math. Comput. Model. 49 (2009), 1692–1699.

[12] F. Rothberger, Eine versharfung der eigenschaft C, Fund. Math. 30 (1938), 50–55.

[13] E. Seneta, Functions of Regular Variation, LNM 506, Springer, New York, 1976.

[14] V. Timotić, D. Djurčić and R. M. Nikolić, On slowly varying sequences, Filomat 29(1) (2015), 7–12.

[15] J. Vitovec, Theory of rapid variation on time scales with applications to dynamic equations, Arch. Math. (Brno) 46 (2010), 263–284.