Generalized Extended Riemann-Liouville Type Fractional Derivative Operator

Download PDF


DOI: 10.46793/KgJMat2301.057A


In this paper, we present new extensions of incomplete gamma, beta, Gauss hypergeometric, confluent hypergeometric function and Appell-Lauricella hypergeometric functions, by using the extended Bessel function due to Boudjelkha [?]. Some recurrence relations, transformation formulas, Mellin transform and integral representations are obtained for these generalizations. Further, an extension of the Riemann-Liouville fractional derivative operator is established.


Generalized extended incomplete gamma function, generalized extended beta function, extended Riemann-Liouville fractional derivative, Mellin transform, extended Gauss hypergeometric function, integral representation.


[1]   P. Agarwal, J. J. Nieto and M.-J. Luo, Extended Riemann-Liouville type fractional derivative operator with applications, Open Math. 15 (2017), 1667–1681.

[2]   D. Baleanu, P. Agarwal, R. K. Parmar, M. M. Alqurashi and S. Salahshour, Extension of the fractional derivative operator of the Riemann-Liouville, J. Nonlinear Sci. Appl. 10 (2017), 2914–2924.

[3]   M. Bohner, G. Rahman, S. Mubeen and K. S. Nisar, A further extension of the extended Riemann-Liouville fractional derivative operator, Turkish J. Math. 42 (2018), 2631–2642.

[4]   M. Boudjelkha, Extended Riemann Bessel functions, Discrete Contin. Dyn. Syst. (2005), 121–130.

[5]   M. Chand, P. Agarwal and Z. Hammouch, Certain sequences involving product of k-Bessel function, Int. J. Appl. Comput. Math. 4(101) (2018), 9 pages.

[6]   M. Chand and Z. Hammouch, Unified fractional integral formulae involving generalized multiindex bessel function, in: International Conference on Computational Mathematics and Engineering Sciences, Springer, 2019, 278–290.

[7]   M. Chand, Z. Hammouch, J. K. K. Asamoah and D. Baleanu, Certain fractional integrals and solutions of fractional kinetic equations involving the product of S-function, in: Mathematical Methods in Engineering, Springer, Cham, 2019, 213–244.

[8]   M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math. 78 (1997), 19–32.

[9]   M. A. Chaudhry and S. M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math. 55 (1994), 99–124.

[10]   M. A. Chaudhry and S. M. Zubair, On an extension of generalized incomplete gamma functions with applications, J. Austral. Math. Soc. Ser. B 37 (1996), 392–405.

[11]   M. A. Chaudhry and S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, Chapman & Hall/CRC, Boca Raton, FL, 2002.

[12]   M. S. Fraczek, Selberg Zeta Functions and Transfer Operators, Springer, Cham, 2017.

[13]   A. Goswami, S. Jain, P. Agarwal and S. Araci, A note on the new extended beta and Gauss hypergeometric functions, Appl. Math. Inf. Sci. 12 (2018), 139–144.

[14]   F. E. Harris, Incomplete Bessel, generalized incomplete gamma, or leaky aquifer functions, J. Comput. Appl. Math. 215 (2008), 260–269.

[15]   A. Jeffrey and D. Zwillinger, Table of Integrals, Series, and Products, Elsevier-Academic Press, Amsterdam, 2007.

[16]   A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.

[17]   I. O. Kıymaz, P. Agarwal, S. Jain and A. Çetinkaya, On a new extension of Caputo fractional derivative operator, in: Advances in Real and Complex Analysis with Applications, Birkhäuser/Springer, Singapore, 2017, 261–275.

[18]   I. O. Kıymaz, A. Çetinkaya and P. Agarwal, An extension of Caputo fractional derivative operator and its applications, J. Nonlinear Sci. Appl. 9 (2016), 3611–3621.

[19]   C. Li, D. Qian and Y. Chen, On Riemann-Liouville and Caputo derivatives, Discrete Dyn. Nat. Soc. (2011), Article ID 562494, 15 pages.

[20]   M.-J. Luo, G. V. Milovanović and P. Agarwal, Some results on the extended beta and extended hypergeometric functions, Appl. Math. Comput. 248 (2014), 631–651.

[21]   K. S. Nisar, G. Rahman and Z. Tomovski, On a certain extension of the Riemann-Liouville fractional derivative operator, Commun. Korean Math. Soc. 34 (2019), 507–522.

[22]   M. A. Özarslan and E. Özergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Modell. 52 (2010), 1825–1833.

[23]   E. Özergin, M. A. Özarslan and A. Altın, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (2011), 4601–4610.

[24]   A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integrals and Series: Direct Laplace Transforms, CRC Press, Nauka, Moscow, 1986.

[25]   M. Safdar, G. Rahman, Z. Ullah, A. Ghaffar and K. S. Nisar, A new extension of the Pochhammer symbol and its application to hypergeometric functions, Int. J. Appl. Comput. Math. 5 (2019), Paper ID 151, 13 pages.

[26]   H. M. Srivastava, G. Rahman and K. S. Nisar, Some extensions of the Pochhammer symbol and the associated hypergeometric functions, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), 2601–2606.

[27]   H. M. Srivastava, A. Tassaddiq, G. Rahman, K. S. Nisar and I. Khan, A new extension of the τ-Gauss hypergeometric function and its associated properties, Mathematics 7(996) (2019), 9 pages.

[28]   R. Srivastava, Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions, Appl. Math. Comput. 243 (2014), 132–137.

[29]   H. Sun, Y. Zhang, D. Baleanu, W. Chen and Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213–231.

[30]   E. J. M. Veling, The generalized incomplete gamma function as sum over modified Bessel functions of the first kind, J. Comput. Appl. Math. 235 (2011), 4107–4116.

[31]   Y. Zhou, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.