Some Results Concerned with Hankel Determinant


Download PDF

Authors: B. N. ORNEK

DOI: 10.46793/KgJMat2303.481O

Abstract:

In this paper, we discuss different versions of the boundary Schwarz lemma and Hankel determinant for ????(α) class. Also, for the function f(z) = z + c2z2 + c3z3 + ⋅ ⋅⋅ defined in the unit disc such that f ????(α), we estimate a modulus of the angular derivative of f(z) function at the boundary point z0 with f(z0) = -z0-
1+α and f(z 0) = --1-
1+ α. That is, we shall give an estimate below    ′′
|f  (z0)| according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and z10. The sharpness of this inequality is also proved.



Keywords:

Fekete-Szegö functional, Julia-Wolff lemma, Hankel determinant, analytic function, Schwarz lemma. angular derivative.



References:

[1]   T. Akyel, Upper bound of Hankel determinant for a class of analytic functions, Filomat (to appear).

[2]   T. Akyel and B. N. Ornek, Some remarks on Schwarz lemma at the boundary, Filomat 31(13) (2017), 4139–4151. https://doi.org/10.2298/FIL1713139A

[3]   T. A. Azeroğlu and B. N. Örnek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), 571–577. https://doi.org/10.1080/17476933.2012.718338

[4]   H. P. Boas, Julius and Julia: Mastering the art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), 770–785.

[5]   V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122 (2004), 3623–3629. https://doi.org/10.1023/B:JOTH.0000035237.43977.39

[6]   G. M. Golusin, Geometric Theory of Functions of Complex Variable (in Russian), 2nd Edition, American Math. Soc., Moscow, 1966.

[7]   M. Mateljević, Rigidity of holomorphic mappings & Schwarz and Jack lemma, (to appear). https://doi.org/10.13140/RG.2.2.34140.90249

[8]   M. Mateljević, N. Mutavdžić and B. N. Örnek, Estimates for some classes of holomorphic functions in the unit disc, Appl. Anal. Discrete Math. (to appear).

[9]   M. Mateljević and M. Svetlik, Hyperbolic metric on the strip and the Schwarz lemma for HQR mappings, Appl. Anal. Discrete Math. 14 (2020), 150–168. https://doi.org/10.2298/AADM200104001M

[10]   P. R. Mercer, Sharpened versions of the Schwarz lemma, J. Math. Anal. Appl. 205 (1997), 508–511. https://doi.org/10.1006/jmaa.1997.5217

[11]   P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski’s lemma, J. Class. Anal. 12 (2018), 93–97. https://doi.org/10.7153/jca-2018-12-08

[12]   P. R. Mercer, An improved Schwarz lemma at the boundary, Open Math. 16 (2018), 1140–1144. https://doi.org/10.1515/math-2018-0096

[13]   R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), 3513–3517. https://doi.org/10.1090/S0002-9939-00-05463-0

[14]   B. N. Örnek and T. Düzenli, Schwarz lemma for driving point impedance functions and its circuit applications, International Journal of Circuit Theory and Applications 47 (2019), 813–824. https://doi.org/10.1002/cta.2616

[15]   B. N. Örnek and T. Düzenli, Boundary analysis for the derivative of driving point impedance functions, IEEE Transactions on Circuits and Systems II: Express Briefs 65(9) (2018), 1149–1153. https://doi.org/10.1109/TCSII.2018.2809539

[16]   M. Obradović ana S. Ponnusamy, On the class U, in: Proceedings of the 21st Annual Conference of the Jammu Mathematical Society and a National Seminar on Analysis and its Application, Jamuu, 2011, 11–26.

[17]   M. Obradović ana S. Ponnusamy, Radius properties for subclasses of univalent functions, Analysis (Munich) 25(2005), 183–188. https://doi.org/10.1524/anly.2005.25.3.183

[18]   B. N. Örnek, A sharp Carathéodory’s inequality on the right half plane, J. Class. Anal. 14(1) (2019), 39–48. https://doi.org/10.7153/jca-2019-14-04

[19]   Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.

[20]   Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14(1967), 108–112. https://doi.org/10.1112/S002557930000807X

[21]   J. Sokol and D. K. Thomas, The second Hankel determinant for alpha-convex functions, Lith. Math. J. (to appear). https://doi.org/10.1007/s10986-018-9397-0

[22]   G. Szegö and M. Fekete, Eine bemerkung uber ungerade schlichte funktionen, J. Lond. Math. Soc. 2 (1933) 85–89. https://doi.org/10.1112/jlms/s1-8.2.85

[23]   D. K. Thomas and J. W. Noonan, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337–346. https://doi.org/10.2307/1997533

[24]   A. Vasudevarao and H. Yanagihara, On the growth of analytic functions in the class U(α), Comput. Methods Funct. Theory 13 (2013), 613–634. https://doi.org/10.1007/s40315-013-0045-8