Three Solutions for p-Hamiltonian Systems with Impulsive Effects

Download PDF


DOI: 10.46793/KgJMat2304.499H


In this paper, we give some new criteria that guarantee the existence of at least three weak solutions to a p-Hamiltonian boundary value problem generated by impulsive effects. To ensure the existence of these solutions, we use variational methods and critical point theory as our main tools.


Weak solution, p-Hamiltonian boundary value problem, impulsive effect, critical point theory, variational methods.


[1]   G. A. Afrouzi, M. Bohner, G. Caristi, S. Heidarkhani and S. Moradi, An existence result for impulsive multi-point boundary value systems using a local minimization principle, J. Optim. Theory Appl. 177(1) (2018), 1–20.

[2]   G. A. Afrouzi, A. Hadjian and V. D. Radulescu, Variational approach to fourth-order impulsive differential equations with two control parameters, Results Math. 65 (2014), 371–384.

[3]   D. Averna and G. Bonanno, A three critical point theorem and its applications to the ordinary Dirichlet problem, Topol. Methods Nonlinear Anal. 22 (2003), 93–103.

[4]   D. D. Bainov and P. S. Simeonov, Systems with Impulse Effects, Ellis Horwood, Chichister, 1989.

[5]   G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal. 54 (2003), 651–665.

[6]   G. Cordaro and G. Rao, Three periodic solutions for perturbed second order Hamiltonian systems, J. Math. Anal. Appl. 359 (2009), 780–785.

[7]   G. D,Agui and G. M. Bisci, Three non-zero solutions for elliptic Neumann problems, Anal. Appl. 9 (2011), 383–394.

[8]   A. d,Onofrio, On pulse vaccination strategy in the SIR epidemic model with vertical transmission, Appl. Math. Lett. 18 (2005), 729–732.

[9]   F. Faraci, Multiple periodic solutions for second order systems with changing sign potential, J. Math. Anal. Appl. 319 (2006), 567–578.

[10]   J. R. Graef, S. Heidarkhani and L. Kong, Infinitely many periodic solutions to a class of perturbed second-order impulsive Hamiltonian systems, Differ. Equ. Appl. 9(2) (2017), 195–212.

[11]   H. Gu and T. An, Existence of infinitely many periodic solutions for second-order Hamiltonian systems, Election. J. Differential Equations 2013(251) (2013), 1–10.

[12]    M. Izydorek and J. Janczewska, Homoclinic solutions for a class of second order Hamiltonian systems, J. Differential Equations 219 (2005), 375–389.

[13]   V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics 6, World Scientific, Singapore, 1989.

[14]   C. Li, Z-Q. Qu and C-L. Tang, Three periodic solutions for p-Hamiltonian systems, Nonlinear Anal. 74 (2011), 1596–1606.

[15]   F. Liao and J. Sun, Variational approach to impulsive problems, A survey of recent results, Abstr. Appl. Anal. 2014(2) (2014), 1–11.

[16]   J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989.

[17]   Q. Meng, Three periodic solutions for a class of ordinary p-Hamiltonian systems, Bound. Value Probl. 2014 (2014).

[18]   G. M. Bisci, Fractional equations with bounded primitive, Appl. Math. Letters 27 (2014), 53–58.

[19]   G. M. Bisci and D. Repovš, Multiple solutions for elliptic equations involving a general operator in divergence form, Ann. Acad. Sci. Fenn. Math. 39 (2014), 259–273.

[20]   S. I. Nenov, Impulsive controllability and optimization problems in population dynamics, Nonlinear Anal. 36 (1999), 881–890.

[21]    P. H. Rabinowitz, Variational methods for Hamiltonian systems, in: Handbook of Dynamical Systems, Vol. 1, Part A, North-Holland, 2002.

[22]   B. Ricceri, A three critical points theorem revisited, Nonlinear Anal. 70 (2009), 3084–3089.

[23]   A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.

[24]   X. Shang and J. Zhang, Three solutions for a perturbed Dirichlet boundary value problem involving the p-Laplacian, Nonlinear Anal. 72 (2010), 1417–1422.

[25]   T. Shen and W. Liu, Infinitely many rotating periodic solutions for suplinear second-order impulsive Hamiltonian systems, Appl. Math. Lett. 88 (2019), 164–170.

[26]   J. Sun, H. Chen and J. J. Nieto, Infinitely many solutions for second-order Hamiltonian system with impulsive effects, Math. Comput. Model. 54 (2011), 544–555.

[27]   Z. Wang and J. Zhang, Periodic solutions of a class of second order non-autonomous Hamiltonian systems, Nonlinear Anal. 72 (2010), 4480–4487.

[28]    B. Xu and C-L. Tang, Some existence results on periodic solutions of ordinary p-Laplacian systems, J. Math. Anal. Appl. 333 (2007), 1228–1236.

[29]   Q. Zhang and C. Liu, Infinitely many periodic solutions for second order Hamiltonian systems, J. Differential Equations 251 (2011), 816–833.

[30]   Q. Zhang and X. H. Tang, New existence of periodic solutions for second order non-autonomous Hamiltonian systems, J. Math. Anal. Appl. 369 (2010), 357–367.

[31]   X. Zhang and Y. Zhou, Periodic solutions of non-autonomous second order Hamiltonian systems, J. Math. Anal. Appl. 345 (2008), 929–933.

[32]   J. Zhou and Y. Li, Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects, Nonlinear Anal. 72 (2010), 1594–1603.

[33]   W. Zou and S. Li, Infinitely many solutions for Hamiltonian systems, J. Differential Equations 186 (2002), 141–164.