Symmetries, Noether’s Theorem, Conservation Laws and Numerical Simulation for Space-Space-Fractional Generalized Poisson Equation


Download PDF

Authors: S. R. HEJAZI, A. NADERIFARD, S. HOSSEINPOUR AND E. DASTRANJ

DOI: 10.46793/KgJMat2305.713H

Abstract:

In the present paper Lie theory of differential equations is expanded for finding symmetry geometric vector fields of Poisson equation. Similarity variables extracted from symmetries are applied in order to find reduced forms of the considered equation by using Erdélyi-Kober operator. Conservation laws of the space-space-fractional generalized Poisson equation with the Riemann-Liouville derivative are investigated via Noether’s method. By means of the concept of non-linear self-adjointness, Noether’s operators, formal Lagrangians and conserved vectors are computed. A collocation technique is also applied to give a numerical simulation of the problem.



Keywords:

Riemann-Liouville derivative, Lie point symmetry, Erdelyi-Kober operator, conservation laws, Jacobi polynomial.



References:

[1]   T. M. Atanacković, S. Konjik, S. Pilipović and S. Simić, Variational problems with fractional derivatives: Invariance conditions and Nothers theorem, Nonlinear Anal. 71(5–6) (2009), 1504–1517. https://doi.org/10.1016/j.na.2008.12.043

[2]   A. H. Bhrawy, E. H. Doha, D. Baleanu and R. M. Hafez, A highly accurate Jacobi collocation algorithm for systems of high-order linear differential-difference equations with mixed initial conditions, Math. Methods Appl. Sci. 38(14) (2015), 3022–3032. https://doi.org/10.1002/mma.3277

[3]   E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, A new Jacobi operational matrix: An application for solving fractional differential equations, Appl. Math. Model. 36(10) (2012), 4931–4943. https://doi.org/10.1016/j.apm.2011.12.031

[4]   G. W. Bluman, A. F. Cheviakov and C. Anco, Application of Symmetry Methods to Partial Differential Equations, Springer, New York, 2000.

[5]   V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics 301, John Wiley & Sons, New York, 1994.

[6]   Y. Chen and H. L. An, Numerical solutions of coupled Burgers equations with time and space fractional derivatives, Appl. Math. Comput. 200(1) (2008), 87–95. https://doi.org/10.1016/j.amc.2007.10.050

[7]   G. S. F. Frederico and D. F. M. Torres, A formulation of Noether’s theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl. 334(2) (2007), 834–846. https://doi.org/10.1016/j.jmaa.2007.01.013

[8]   R. K. Gazizov, A. A. Kasatkin and S. Y. Lukashchuk, Symmetry properties of fractional diffusion equations, Physica Scripta 136 (2009), 014–016. https://doi.org/10.1088/0031-8949/2009/T136/014016

[9]   R. K. Gazizov, N. H. Ibragimov and S. Y. Lukashchuk, Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations, Commun. Nonlinear Sci. Numer. Simul. 23(1–3) (2015), 153–163. https://doi.org/10.1016/j.cnsns.2014.11.010

[10]   Q. Huang and R. Zhdanov, Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative, Phys. A 409 (2014), 110–118. https://doi.org/10.1016/j.physa.2014.04.043

[11]    E. Lashkarian, S. R. Hejazi, N. Habibi and A. Motamednezhad, Symmetry properties, conservation laws, reduction and numerical approximations of time-fractional cylindrical-Burgers equation, Commun. Nonlinear Sci. Numer. Simul. 67 (2019), 176–191. https://doi.org/10.1016/j.cnsns.2018.06.025

[12]   E. Lashkarian, S. R. Hejazi and E. Dastranj, Conservation laws of (3+α)-dimensional time-fractional diffusion equation, Comput. Math. Appl. 75(3) (2018), 740–754. https://doi.org/10.1016/j.camwa.2017.10.001

[13]   Z. Lin and J. R. Wang, New Riemann–Liouville fractional Hermite-Hadamard inequalities via two kinds of convex functions, Journal of Interdisciplinary Mathematics 20(2) (2017), 357–382. https://doi.org/10.1080/09720502.2014.914281

[14]   S. Y. Lukashchuk, Conservation laws for time-fractional subdiffusion and diffusion-wave equations, Nonlinear Dyn. 80(1–2) (2014). https://doi.org/10.1007/s11071-015-1906-7

[15]   F. Mainardy, Fractional Calculus and Waves in Linear Viscoelasticity, An Introduction to Mathematical Models, Imperial College Press, Singapore, 2010.

[16]   P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics 107, Springer, New York, 1993.

[17]   A. Ouhadan and E. H. Elkinani, Exact solutions of time fractional Kolmogorov equation by using Lie symmetry analysis, J. Fract. Calc. Appl. 5(1) (2014), 97–104.

[18]   M. B. Pintarelli and F. Vericat, On the numerical solution of the linear and nonlinear Poisson equations seen as bi-dimensional inverse moment problems, Journal of Interdisciplinary Mathematics 19(5–6) (2016), 927–944. https://doi.org/10.1080/09720502.2014.916845

[19]   J. Sabatier, O. P. Agrawal and J. A. T Machado, Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007.

[20]   E. Saberi and S. R. Hejazi, A comparison of conservation laws of the Boussinesq system, Kragujevac J. Math. 43(2) (2019), 173–200.

[21]   S. Samko, A. A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach science, Yverdon, Switzerland, 1993.

[22]   I. Shingareva and C. Lizarraga-Celaya, Solving Nonlinear Partial Differential Equations with Maple and Mathematica, Springer Wien, NewYork, 2011.

[23]   K. Singla and R. K. Gupta, Space-time fractional nonlinear partial differential equations: symmetry analysis and conservation laws, Nonlinear Dyn. 89 (2017), 321–331. https://doi.org/10.1007/s11071-017-3456-7

[24]   H. G. Sun, Y. Zhang, D. Baleanu, W. Chen and Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019

[25]   Y. Zhou, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, London, 2016.