Almost Multi-Diagonal Determinants

Download PDF


DOI: 10.46793/KgJMat2307.1047R


We found motivation for this paper in the conjectures about multi-diagonal determinants published in a few recent papers. Especially, we were interested in the case with a few non-zero elements in the lower left corner or/and in the upper right corner. Our research with changeable free elements lead us to the systems of partial differential equations. Also, we include some generalizations of the problems and conjectures.


Determinants, multi-diagonal, closed form.


[1]   M. Andjelić and C. M. Fonseca, Some determinantal considerations for pentadiagonal matrices, Linear Multilinear Algebra (2020), 1–9.

[2]   A. Cvetković, P. Rajković and M. Ivković, Catalan numbers, the Hankel transform, and Fibonacci numbers, J. Integer Seq. 5 (2002), Article ID 02.1.3., 8 pages.

[3]   Z. Du, C. M. Fonseca and A. Pereira, On determinantal recurrence relations of banded matrices, Kuwait J. Sci. 49(1) (2022), 1–9. https://10.48129/kjs.v49i1.11165

[4]   K. Filipiak, A Markiewicz and A. Sawikowska, Determinants of multidiagonal matrices, Electron. J. Linear Algebra 25 (2012), 102–118.

[5]   P. Grover, Derivatives of multilinear functions of matrices, in: F. Nielsen, R. Bhatia, R. (Eds.), Matrix Information Geometry, Springer, Berlin, Heidelberg, 2013.

[6]   J. Jia, Q. Kong and T. Sogabe, A new algorithm for solving nearly penta-diagonal Toeplitz linear systems, Comput. Math Appl. 63 (2012), 1238–1243. https://doi:10.1016/j.camwa.2011.12.044

[7]   M. J. Karling, A. O. Lopes and S. R. C. Lopes, Pentadiagonal matrices and an application to the centered MA(1) stationary Gaussian process, International Journal of Applied Mathematics and Statistics 61(1) (2022), 1–22.

[8]   C. Krattenthaler, Advanced determinant calculus: A complement, Linear Algebra Appl. 411 (2005), 68–166. https://doi:10.1016/j.laa.2005.06.042

[9]   B. Kurmanbek, Y. Amanbek and Y. Erlangga, A proof of Andjelić-Fonseca conjectures on the determinant of some Toeplitz matrices and their generalization, Linear Multilinear Algebra (2020), 1–9.

[10]   L. Losonczi, Determinants of some pentadiagonal matrices, Glas. Mat. 56(2) (2021), 271–286.

[11]   L. Losonczi, Products and inverses of multidiagonal matrices with equally spaced diagonals, Filomat 36(3) (2022), 1021–1030.

[12]   A. Nalli and H. Civciv, A generalization of tridiagonal matrix determinants, Fibonacci and Lucas numbers, Chaos Solitons Fractals 40 (2009), 355–361. https://doi:10.1016/j.chaos.2007.07.069

[13]   A. P. Stakhov, Fibonacci matrices, a generalization of the ”Cassini 3 formula“, and a new coding theory, Chaos Solitons Fractals 30(1) (2006), 56–66. https://doi:10.1016/j.chaos.2005.12.054

[14]    P. Stanimirović, J. Nikolov and I. Stanimirović, A generalization of Fibonacci and Lucas matrices, Discrete Appl. Math. 156 (2008), 2606–2619. https://doi:10.1016/j.dam.2007.09.028

[15]   R. A. Sweet, A recursive relation for the determinant of a pentadiagonal matrix, Communications of the ACM 12(6) (1969), 330–332.

[16]   H. Zakrajšek and M. Petkovšek, Pascal-like determinants are recursive, Adv. Appl. Math. 33 (2004), 431–450. https://doi:10.1016/j.aam.2003.09.004