A New Inertial-Projection Method for Solving Split Generalized Mixed Equilibrium and Hierarchical Fixed Point Problems

Download PDF


DOI: 10.46793/KgJMat2402.199O


In this paper, we introduce a new iterative algorithm of inertial form for approximating the common solution of Split Generalized Mixed Equilibrium Problem (SGMEP) and Hierarchical Fixed Point Problem (HFPP) in real Hilbert spaces. Motivated by the subgradient extragradient method, we incorporate the inertial technique to accelerate the convergence of the proposed method. Under standard and mild assumption of monotonicity and lower semicontinuity of the SGMEP and HFPP associated mappings, we establish the strong convergence of the iterative algorithm. Some numerical experiments are presented to illustrate the performance and behaviour of our method as well as comparing it with some related methods in the literature.


Pseudomonotone, equilibrium problem, hierachical fixed point, inertial, strong convergence, Hilbert space.


[1]   H. A. Abass, K. O. Aremu, L. O. Jolaoso and O. T. Mewomo, An inertial forward-backward splitting method for approximating solutions of certain optimization problems, Journal of Nonlinear Functional Analysis 2020 (2020), Article ID 6, 20 pages. https://doi.org/10.23952/jnfa.2020.6

[2]   T. O. Alakoya, L. O. Jolaoso and O. T. Mewomo, A general iterative method for finding common fixed point of finite family of demicontractive mappings with accretive variational inequality problems in Banach spaces, Nonlinear Stud. 27(1) (2020), 1–24.

[3]   T. O. Alakoya, L. O. Jolaoso, A. Taiwo and O. T. Mewomo, Inertial algorithm with self-adaptive stepsize for split common null point and common fixed point problems for multivalued mappings in Banach spaces, Optimization 17(5) (2018), 1975–1992. https://doi.org/10.1080/02331934.2021.1895154

[4]   T. O. Alakoya, L. O. Jolaoso and O. T. Mewomo, A self adaptive inertial algorithm for solving split variational inclusion and fixed point problems with applications, J. Ind. Manag. Optim. (2020), 27 pages. https://doi.org/10.3934/jimo.2020152

[5]   T. O. Alakoya, L. O. Jolaoso and O. T Mewomo, Two modifications of the inertial Tseng extragradient method with self-adaptive step size for solving monotone variational inequality problems, Demonstr. Math. 53 (2020), 208–224.

[6]   T. O. Alakoya, A. Taiwo, O. T. Mewomo and Y. J. Cho, An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings, Ann. Univ. Ferrara Sez. VII Sci. Mat. (2021). https://doi.org/10.1007/s11565-020-00354-2

[7]   M. Alansari, K. R. Kazmi and R. Ali, Hybrid iterative scheme for solving split equilibrium and hierarchical fixed point problems, Optim. Lett. 14 (2020), 2379–2394. https://doi.org/10.1007/s11590-020-01560-9

[8]   K. O. Aremu, H. A. Abass, C. Izuchukwu and O. T. Mewomo, A viscosity-type algorithm for an infinitely countable family of (f,g)-generalized k-strictly pseudononspreading mappings in CAT(0) spaces, Analysis 40(1) (2020), 19–37. https://doi.org/10.1515/anly-2018-0078

[9]   E. Blum and W. Oettli, From optimization and variational inequalities to equilibriums, Math. Stud. 63(1–4) (1994), 124–145.

[10]   A. Bnouhachem and Y. Chen, An iterative method for a common solution of generalized mixed equilibrium problem, variational inequalities and hierarchical fixed point problems, Fixed Point Theory Appl. 2014 (2014), Article ID 155. https://doi.org/10.1186/1687-1812-2014-155

[11]   Y. Censor, T. Borfield, B. Martin and A. Trofimov, A unified approach for inversion problem in intensity-modulated radiation therapy, Physics in Medicine & Biology 51 (2006), 2353–2365. https://doi.org/10.1088/0031-9155/51/10/001

[12]   Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994), 221–239. https://doi.org/10.1007/BF02142692

[13]   Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms 59 (2012), 301–323. https://doi.org/10.1007/s11075-011-9490-5

[14]   L. Ćirić, R. V. Ljubomir, S. Radenović, M. Rajović and R. Lazović, Common fixed point theorems for non-self-mappings in metric spaces of hyperbolic type, J. Comput. Appl. Math. 233(11) (2010), 2966–2974.

[15]   L. Ćirić, A. Rafiq, S. Radenović, M. Rajović and J. S. Ume, On Mann implicit iterations for strongly accretive and strongly pseudo-contractive mappings. Appl. Math. Comput. 198(1) (2008), 128–137. https://doi.org/10.1016/j.cam.2009.11.042

[16]   B. V. Dinh, D. X. Son, L. Jiao and D. S. Kim, Linesearch algorithms for split equilibrium problems and nonexpansive mappings, Fixed Point Theory Appl. 2016 (2016), Paper ID 27, 21 pages. https://doi.org/10.1186/s13663-016-0518-3

[17]   D. Djukić, Lj. Paunović and S. Radenović, Convergence of iterates with errors of uniformly quasi-Lipschitzian mappings in cone metric spaces, Kragujevac J. Math. 35(3) (2011), 399–410.

[18]   A. G. Gebrie and R. Wangkeeree, Hybrid projected subgradient-proximal algorithms for solving split equilibrium problems and common fixed point problems of nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl. 2018 (2018), Paper ID 5, 28 pages. https://doi.org/10.1186/s13663-018-0630-7

[19]   A. Gibali, L. O. Jolaoso, O. T. Mewomo and A. Taiwo, Fast and simple Bregman projection methods for solving variational inequalities and related problems in Banach spaces, Results Math. 75 (2020), Paper ID 179, 36 pages. https://doi.org/10.1007/s00025-020-01306-0

[20]   E. C. Godwin, C. Izuchukwu and O. T. Mewomo, An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces, Boll. Unione Mat. Ital. (2020). https://doi.org/10.1007/s40574-020-00

[21]   D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258.

[22]   Z. He, The split equilibrium problem and its convergence algorithms, J. Inequal. Appl. 2012 (2012), Article ID 162, 15 pages. https://doi.org/10.1186/1029-242X-2012-162

[23]   C. Izuchukwu, A. A. Mebawondu and O. T. Mewomo, A New Method for Solving Split Variational Inequality Problems without Co-coerciveness, J. Fixed Point Theory Appl. 22(4) (2020), Article ID 98, 23 pages. https://doi.org/10.1007/s11784-020-00834-0

[24]   C. Izuchukwu, C. C. Okeke and O. T. Mewomo, Systems of Variational Inequalities and multiple-set split equality fixed point problems for countable families of multivalued type-one demicontractive-type mappings, Ukrainian Math. J. 71 (2020), 1692–1718. https://doi.org/10.1007/s11253-020-01742-9

[25]   L. O. Jolaoso, T. O. Alakoya, A. Taiwo and O. T. Mewomo, Inertial extragradient method via viscosity approximation approach for solving equilibrium problem in Hilbert space, Optimization 70(2) (2020), 387–412. https://doi.org/10.1080/02331934.2020.1716752

[26]   L. O. Jolaoso, K. O. Oyewole, K. O. Aremu and O. T. Mewomo, A new efficient algorithm for finding common fixed points of multivalued demicontractive mappings and solutions of split generalized equilibrium problems in Hilbert spaces, Int. J. Comput. Math. (2020). https://doi.org/10.1080/00207160.2020.1856823

[27]   L. O. Jolaoso, A. Taiwo, T. O. Alakoya and O. T. Mewomo, Strong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach space, J. Optim. Theory Appl. 185(3) (2020), 744–766. https://doi.org/10.1007/s10957-020-01672-3

[28]   S. H. Khan, T. O. Alakoya and O. T. Mewomo, Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach spaces, Math. Comput. Appl. 25 (2020), Article ID 54. https://doi.org/10.3390/mca25030054

[29]   P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Var. Anal.. 16 (2008), 899–912. https://doi.org/10.1007/s11228-008-0102-z

[30]   A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl. 150 (2011), 275–283. https://doi.org/10.1007/s10957-011-9814-6

[31]   A. Moudafi and P. E. Mainge, Towards viscosity approximations of hierarchical fixed point problems, Fixed Point Theory Appl. 2006 (2016), Article ID 95453. https://doi.org/10.1155/FPTA/2006/95453

[32]    G. N. Ogwo, C. Izuchukwu and O. T. Mewomo, Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity, Numer. Algorithms (2021). https://doi.org/10.1007/s11075-021-01081-1

[33]   M. A. Olona, T. O. Alakoya, A. O.-E. Owolabi and O. T. Mewomo, Inertial shrinking projection algorithm with self-adaptive step size for split generalized equilibrium and fixed point problems for a countable family of nonexpansive multivalued mappings, Demonstr. Math. (2021). https://doi.org/10.1515/dema-2021-0006

[34]   M. A. Olona, T. O. Alakoya, A. O.-E. Owolabi and O. T. Mewomo, Inertial algorithm for solving equilibrium, variational inclusion and fixed point problems for an infinite family of strictly pseudocontractive mappings, Journal of Nonlinear Functional Analysis 2021 (2021), Article ID 10, 21 pages. https://doi.org/10.23952/jnfa.2020.10

[35]   A. O.-E. Owolabi, T. O. Alakoya, A. Taiwo and O. T. Mewomo, A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings, Numer. Algebra Control Optim. (2021). https://doi.org/10.3934/naco.2021004

[36]   O. K. Oyewole, H. A. Abass and O. T. Mewomo, Strong convergence algorithm for a fixed point constraint split null point problem, Rend. Circ. Mat. Palermo (2) 70(2) (2020), 387–412. https://doi.org/10.1007/s12215-020-00505-6

[37]   O. K. Oyewole, L. O. Jolaoso, C. Izuchukwu and O. T. Mewomo, On approximation of common solution of finite family of mixed equilibrium problems involving μ-α relaxed monotone mapping in Banach space, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81(1) (2019), 19–34.

[38]   O. K. Oyewole, O. T. Mewomo, L. O. Jolaoso and S. H. Khan, An extragradient algorithm for split generalized equilibrium problem and the set of fixed points of quasi-ϕ-nonexpansive mappings in Banach spaces, Turkish J. Math. 44(4) (2020), https://doi.org/10.3906/mat-1911-83

[39]   B. T. Polyak, Some methods of speeding up the convergence of iteration methods, U.S.S.R Comput. Math. Math. Phys. 4(5) (1964), 1–17.

[40]   K. Rattanaseeha, R. Wangkeeree and R. Wangkeeree, Linesearch algorithms for split generalized equilibrium problems and two families of strict pseudo-contraction mappings, Thai J. Math. 15(3) (2017), 581–606.

[41]   A. Taiwo, T. O. Alakoya and O. T. Mewomo, Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces, Numer. Algorithms 80 (2021), 1359–1389. https://doi.org/10.1007/s11075-020-00937-2

[42]   A. Taiwo, T. O. Alakoya and O. T. Mewomo, Strong convergence theorem for solving equilibrium problem and fixed point of relatively nonexpansive multi-valued mappings in a Banach space with applications, Asian-Eur. J. Math. (2020). https://doi.org/10.1142/S1793557121501370

[43]   A. Taiwo, L. O. Jolaoso and O. T. Mewomo, Inertial-type algorithm for solving split common fixed-point problem in Banach spaces, J. Sci. Comput. 86 (2021), Article ID 12. https://doi.org/10.1007/s10915-020-01385-9

[44]   A. Taiwo, L. O. Jolaoso and O. T. Mewomo, Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert Spaces, J. Ind. Manag. Optim. (2020). https://doi.org/10.1007/s11075-020-00937-2

[45]   W. Takahashi, Nonlinear Functional Analysis, Yokohama-Publishers, 2000.

[46]   S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), 506–515. https://doi.org/10.1016/j.jmaa.2006.08.036

[47]   H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc. 66 (2002), 240–256. https://doi.org/10.1112/S0024610702003332

[48]   S. S. Zhang, Generalized mixed equilibrium problem in Banach spaces, Appl. Math. Mech. (English Ed.) 30(9) (2009), 1105–1112. https://doi.org/10.1007/s10483-009-0904-6