Quantitative Uncertainty Principles for the Canonical Fourier Bessel Transform


Download PDF

Authors: K. HLEILI AND M. HLEILI

DOI: 10.46793/KgJMat2504.567H

Abstract:

The aim of this paper is to prove new uncertainty principles for the Canonical Fourier Bessel transform. To do so we prove a quantitative uncertainty inequality about the essential supports of a nonzero function for this transformation.



Keywords:

Canonical Fourier Bessel transform, Donoho-Stark’s uncertainty principle, Matolcsi-Szücs-type inequality.



References:

[1]   S. Abe and J. T. Sheridan, Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation, Optics Letters 19 (1994), 1801–1803.

[2]   M. Bahri and R. Ashino, A variation on uncertainty principle and logarithmic uncertainty principle for continuous quaternion wavelet transforms, Abstr. Appl. Anal. 11 (2017), Article ID 3795120. https://doi.org/10.1155/2017/3795120

[3]   B. Barshan, M. Kutay and H. Ozaktas, Optimal filtering with linear canonical transformations, Optics Communications 135 (1997), 32–36.

[4]   L. M. Bernardo, ABCD matrix formalism of fractional Fourier optics, Optical Engineering (Bellingham) 35 (1996), 732–740.

[5]   S. A. J. Collins, Lens-system diffraction integral written in terms of matrix optics, Journal of the Optical Society of America 60(9) (1970), 1168–1177.

[6]   M. Cowling and J. F. Price, Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality, SIAM J. Math. Anal. 15 (1984), 151–165.

[7]   M. F. E. De Jeu, The Dunkl transform, Inventory Math. 113 (1993), 147–162.

[8]   L. Dhaouadi, J. Sahbani and A. Fitouhi, Harmonic analysis associated to the canonical Fourier Bessel transform, Integral Transforms Spec. Funct. (2019), 290–315. https://doi.org/10.1080/10652469.2020.1823977

[9]   D. L. Donoho and P. B. Strak, Uncertainty principles and signal recovery, SIAM J. Appl. Math. 49 (3) (1989), 906–931.

[10]   C. F. Dunkl, Hankel transforms associated to finite reflection groups, Contemp. Math. 138(1) (1992), 128–138.

[11]   S. Ghazouani, E. A. Soltani and A. Fitouhi, A unified class of integral transforms related to the Dunkl transform, J. Math. Anal. Appl. 449(2) (2017), 1797–1849.

[12]   S. Ghobber, Variations on uncertainty principles for integral operators, Appl. Anal. 93(5) (2014), 1057–1072.

[13]   K. Hleili and S. Omri, An LpLq version of Miyachi’s theorem for the Riemann-Liouville operator, Indian Journal of Pure and Applied Mathematics 46(2) (2015), 121–138.

[14]   K. Hleili, Uncertainty principles for spherical mean L2-multiplier operators, J. Pseudo-Differ. Oper. Appl. 9 (2018), 573–587.

[15]   K. Hleili, Continuous wavelet transform and uncertainty principle related to the Weinstein operator, Integral Transforms Spec. Funct. 29(4) (2018), 252–268.

[16]   K. Hleili, A dispersion inequality and accumulated Spectrograms in the Weinstein Setting, Bull. Math. Anal. Appl. 12(1) (2020), 51–70.

[17]   K. Hleili, Some Results for the windowed Fourier transform related to the spherical mean operator, Acta Math. Vietnam. 46(1) (2021), 179–201.

[18]   K. Hleili, A variety of uncertainty principles for the Hankel-Stockwell transform, Open Journal of Mathematical Analysis 5(1) (2021), 22–34.

[19]   K. Hleili, A variation on uncertainty principles for quaternion linear canonical transform, Advances in Applied Clifford Algebras 31(3) (2021), 1–13.

[20]   K. Hleili, Windowed linear canonical transform and its applications to the time-frequency analysis, J. Pseudo-Differ. Oper. Appl. 13(2) (2022), 1–26.

[21]   K. Hleili, Lp uncertainty principles for the Windowed Spherical mean transform, Mem. Differ. Equ. Math. Phys. 85 (2022), 75–90.

[22]   D. F. V. James and G. S. Agarwal, The generalized Fresnel transform and its application to optics, Optics Communications 126 (1996), 207–212.

[23]   F. H. Kerr, A fractional power theory for Hankel transforms in L2(+), J. Math. Anal. Appl. 158(1) (1991), 114–123.

[24]   H. J. Landau, On Szegö’s eigenvalue distribution theorem and non-Hermitian kernels, J. Anal. Math. 28 (1975), 335–357.

[25]   H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty- III: the dimension of the space of essentially time- and band-limited signals, The Bell System Technical Journal 41 (1962), 1295–1336.

[26]   M. Moshinsky and C. Quesne, Linear canonical transformations and their unitary representations, J. Math. Phys. 12(8) (1971), 1772–1780.

[27]   S. Omri, Local uncertainty principle for the Hankel transform, Integral Transforms Spec. Funct. 21(9) (2010), 703–712.

[28]   H. Ozaktas, Z. Zalevsky and M. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing, Wiley, New York, 2001.

[29]   S. Pei and J. Ding, Eigenfunctions of linear canonical transform, IEEE Trans. Signal Process. 50 (2002), 11–26.

[30]   J. F. Price, Inequalities and local uncertainty principles, J. Math. Phys. 24 (1983), 1711–1714.

[31]   F. Soltani, An Lp Heisenberg-Pauli-Weyl uncertainty principle for the Dunkl transform, Konuralp J. Math. 2(1) (2014), 1–6.

[32]   F. Soltani and J. Ghazwani, A variation of the Lp uncertainty principles for the Fourier transform, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 42(1) (2016), 10–24.

[33]   G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944.

[34]   K. B. Wolf, Canonical transforms. II, Complex radial transforms, J. Math. Phys. 15 (1974), 1295–1301.