Existence of Positive Solutions for a Class of Kirrchoff Elliptic Systems with Right Hand Side Defined as a Multiplication of Two Separate Functions
 Download PDF
Authors: Y. BOUIZEM, S. BOULAARAS AND B. DJEBBAR
DOI: 10.46793/KgJMat2104.587B
Abstract:
The paper deals with the study of existence of weak positive solutions for a new class of Kirrchoff elliptic systems in bounded domains with multiple parameters, where the right hand side defined as a multiplication of two separate functions.
Keywords:
Kirrchoff elliptic systems, existence, positive solutions, sub-supersolution, multiple parameters
References:
[1] C. O. Alves and F. J. S. A.Correa, On existence of solutions for a class of problem involving a nonlinear operator, Comm. Appl. Nonlinear Anal. 8 (2001), 43–56.
[2] N. Azouz and A. Bensedik, Existence result for an elliptic equation of Kirchhoff type with changing sign data, Funkcial. Ekvac. 55 (2012), 55–66.
[3] S. Boulaaras and R. Guefaifia, Existence of positive weak solutions for a class of Kirrchoff elliptic systems with multiple parameters, Math. Methods Appl. Sci. 41 (2018), 5203–5210.
 [4]   S. Boulaaras and A. Allahem, Existence of positive solutions
    of  nonlocal  p
-Kirchhoff  evolutionary  systems  via  Sub-Super
    Solutions Concept, Symmetry 11 (2019), 1–11.
    
[5] S. Boulaaras, R. Guefaifia and S. Kabli, An asymptotic behavior of positive solutions for a new class of elliptic systems involving of (p(x),q(x))-Laplacian systems, Bol. Soc. Mat. Mex. 25 (2019), 145–162.
[6] D. D. Hai and R. Shivaji, An existence result on positive solutions for a class of p-Laplacian systems, Nonlinear Anal. 56 (2004), 1007–1010.
[7] R. Guefaifia and S. Boulaaras, Existence of positive radial solutions for (p(x),q(x))-Laplacian systems, Appl. Math. E-Notes 18 (2018), 209–218.
 [8]   X. Hanand  G. Dai,  On  the  sub-supersolution   method  for
    p
-Kirchhoff   type  equations,  J. Inequal. Appl.  283  (2012),
    1–11.
    
[9] M. Chen, On positive weak solutions for a class of quasilinear elliptic systems, Nonlinear Anal. 62 (2005), 751–756.
[10] G. Kirchhoff, Vorlesungen Uber Mathematische Physik, B.G. Teubner, Leipzig, 1983.
[11] Y. Bouizem, S. Boulaaras and B. Djebbar, Some existence results for an elliptic equation of Kirchhoff-type with changing sign data and a logarithmic nonlinearity, Math. Methods Appl. Sci. 42 (2019), 2465–2474.
