Some Matrix and Compact Operators of the Absolute Fibonacci Series Spaces


Download PDF

Authors: F. GöKçE AND M. A. SARIGöL

DOI: 10.46793/KgJMat2002.273G

Abstract:

In the present paper, we introduce the absolute Fibonacci space |Fu |k, give some inclusion relations and investigate topological and algebraic structure such as BK-space, α-, β-, γ- duals and Schauder basis. Further, we characterize certain matrix and compact operators on these spaces, also determine their norms and Hausdroff meausures of noncompactness.



Keywords:

Absolute summability, Fibonacci numbers, matrix transformations, sequence spaces, bounded operators, Hausdroff meausures of noncompactness.



References:

[1]   B. Altay and F. Başar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space p (0 < p < 1), Commun. Math. Anal. 2(2) (2007), 1–11.

[2]   B. Altay and F. Başar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 30(5) (2006), 591–608.

[3]   B. Altay, F. Başar and M. Mursaleen, On the Euler sequence spaces which include the spaces lp and l I, Inform. Sci. 176(10) (2005), 1450–1462.

[4]   F. Başar and N. L. Braha, Euler-Cesàro difference spaces of bounded, convergent and null sequences, Tamkang J. Math. 47(4) (2016), 405–420.

[5]   F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, Istanbul, 2012.

[6]   F. Başar and B. Altay, On the space of sequences of p-bounded variation and related matrix map- pings, (English, Ukrainian summary) Ukrain. Mat. Zh. 55(1) (2003), 108–118, reprinted in Ukrainian Math. J. 55(1) (2003), 136–147.

[7]   M. Başarır, F. Başar and E. E. Kara, On the spaces of Fibonacci difference absolutely p-summable, null and convergent sequences, Sarajevo J. Math. 12(25) (2016), 167–182.

[8]   J. Boos and P. Cass, Classical and Modern Methods in Summability, Oxford University Press, New York, 2000.

[9]   H. Bor, On summability factors of infinite series, Tamkang J. Math. 16(1) (1985), 13–20.

[10]   H. Bor and B. Thorpe, On some absolute summability methods, Analysis 7(2) (1987), 145–152.

[11]   T. M. FLett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. 7 (1957), 113–141.

[12]   G. C. Hazar and M. A. Sarıgöl, Compact and matrix operators on the space |C,1|k, J. Comput. Anal. Appl. 25 (2018), 1014–1024.

[13]   G. C. Hazar and F. Gökçe, Characterizations of matrix transformatios on the series spaces derived by absolute factorable summability, Developments in Science and Engineering (2016), 411–426.

[14]   A. M. Jarrah and E. Malkowsky, Ordinary absolute and strong summability and matrix transformations, Filomat 17 (2003), 59–78.

[15]   E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl. 2013(1) (38) (2013), 16 pages.

[16]   E. E. Kara and M. Ilkhan, On some Banach sequence spaces derived by a new band matrix, Br. J. Math. Comput. Sci. 9(2) (2015), 141–159.

[17]   E. E. Kara and M. Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear Multilinear Algebra 64(11) (2016), 2208–2223.

[18]   V. Karakaya, A. K. Noman and H. Polat, On paranormed λ-sequence spaces of non-absolute type, Math. Comput. Modelling 54(5) (2011), 1473–1480.

[19]   T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, New York, 2011.

[20]   I. J. Maddox, Elements of Functinal Analysis, Cambridge University Press, London, New York, 1970.

[21]   E. Malkowsky and V. Rakocević, On matrix domains of triangles, Appl. Math. Comput. 189(2) (2007), 1146–1163.

[22]   E. Malkowsky and V. Rakocević, An introduction into the theory of sequence space and measures of noncompactness, Zb. Rad. (Beogr.) 9(17) (2000), 143–234.

[23]   M. R. Mehdi, Summability factors for generalized absolute summability I, Proc. Lond. Math. Soc. 3(1) (1960), 180–200.

[24]   R. N. Mohapatra and M. A. Sarıgöl, On matrix operators on the series spaces || ¯ ????||
 N pk, Ukrain Mat. Zh. 69(11) (2017), 1524–1533.

[25]   M. Mursaleen, F. Başar and B. Altay, On the Euler sequence spaces which include the spaces lp and l II, Nonlinear Anal. 65(3) (2006), 707–717.

[26]   C. Orhan and M. A. Sarıgöl, On absolute weighted mean summability, Rocky Mountain J. Math. 23(3) (1993), 1091–1097.

[27]   V. Rakocević, Measures of noncompactness and some applications, Filomat 12(2) (1998), 87–120.

[28]   M. A. Sarıgöl, Spaces of series summable by absolute Cesàro and matrix operators, Communications in Mathematics and Applications 7(1) (2016), 11–22.

[29]   M. A. Sarıgöl, Extension of Mazhar’s theorem on summability factors, Kuwait J. Sci. 42(3) (2015), 28–35.

[30]   M. A. Sarıgöl, Matrix transformations on fields of absolute weighted mean summability, Studia Sci. Math. Hungar. 48(3) (2011), 331–341.

[31]   M. A. Sarıgöl, Necessary and sufficient conditions for the equivalence of the summability methods || ¯    ||
 N ,pnk and |C, 1|k, Indian J. Pure Appl. Math. 22(6) (1991), 483–489.

[32]   M. A. Sarıgöl, On the local properties of factored Fourier series, Appl. Math. Comput. 216(11) (2010), 3386–3390.

[33]   M. A. Sarıgöl, On two absolute Riesz summability factors of infinite series, Proc. Amer. Math. Soc. 118(2) (1993), 485–488.

[34]   M. A. Sarıgöl, On absolute weighted mean summability methods, Proc. Amer. Math. Soc. 115(1) (1992), 157–160.

[35]   M. Stieglitz and H. Tietz, Matrix transformationen von Folgenraumen. Eine Ergebnisübersicht, Math. Z. 154(1) (1977), 1–16.

[36]   W. T. Sulaiman, On summability factors of infinite series, Proc. Amer. Math. Soc. 115 (1992), 313–317.

[37]   A. Wilansky, Summability Through Functional Analysis, Mathematics Studies 85, North Holland, Amsterdam, 1984.